Vehicle classification and speed estimation using Computer Vision techniques
- Autores
- Yabo, Agustín; Arroyo, Sebastián I.; Safar, Félix G.; Oliva, Damián
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this work, we implement a real-time vehicle classification and speed estimation system and apply it to videos acquired from traffic cameras installed in highways. In this approach we: a) Detect moving vehicles through backgroundforeground segmentation techniques. b) Compare different supervised classifiers (e.g. artificial neural networks) for vehicle classification into categories: (car, motorcycle, van, and bus/truck). c) Apply a calibration method to georeference vehicles using satellite images. d) Estimate vehicles speed per class using feature tracking and nearest neighbors algorithms.
Facultad de Ingeniería - Materia
-
Ingeniería
Informática
sistemas de control
speed estimation, computer vision, traffic camera, feature tracking, vehicle classification - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/56425
Ver los metadatos del registro completo
| id |
SEDICI_0a89f970f7e6b9bf76b3e569ba4cf5af |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/56425 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Vehicle classification and speed estimation using Computer Vision techniquesYabo, AgustínArroyo, Sebastián I.Safar, Félix G.Oliva, DamiánIngenieríaInformáticasistemas de controlspeed estimation, computer vision, traffic camera, feature tracking, vehicle classificationIn this work, we implement a real-time vehicle classification and speed estimation system and apply it to videos acquired from traffic cameras installed in highways. In this approach we: a) Detect moving vehicles through backgroundforeground segmentation techniques. b) Compare different supervised classifiers (e.g. artificial neural networks) for vehicle classification into categories: (car, motorcycle, van, and bus/truck). c) Apply a calibration method to georeference vehicles using satellite images. d) Estimate vehicles speed per class using feature tracking and nearest neighbors algorithms.Facultad de Ingeniería2016-11-03info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/56425enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-99994-9-7info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:47:30Zoai:sedici.unlp.edu.ar:10915/56425Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:47:30.596SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Vehicle classification and speed estimation using Computer Vision techniques |
| title |
Vehicle classification and speed estimation using Computer Vision techniques |
| spellingShingle |
Vehicle classification and speed estimation using Computer Vision techniques Yabo, Agustín Ingeniería Informática sistemas de control speed estimation, computer vision, traffic camera, feature tracking, vehicle classification |
| title_short |
Vehicle classification and speed estimation using Computer Vision techniques |
| title_full |
Vehicle classification and speed estimation using Computer Vision techniques |
| title_fullStr |
Vehicle classification and speed estimation using Computer Vision techniques |
| title_full_unstemmed |
Vehicle classification and speed estimation using Computer Vision techniques |
| title_sort |
Vehicle classification and speed estimation using Computer Vision techniques |
| dc.creator.none.fl_str_mv |
Yabo, Agustín Arroyo, Sebastián I. Safar, Félix G. Oliva, Damián |
| author |
Yabo, Agustín |
| author_facet |
Yabo, Agustín Arroyo, Sebastián I. Safar, Félix G. Oliva, Damián |
| author_role |
author |
| author2 |
Arroyo, Sebastián I. Safar, Félix G. Oliva, Damián |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Ingeniería Informática sistemas de control speed estimation, computer vision, traffic camera, feature tracking, vehicle classification |
| topic |
Ingeniería Informática sistemas de control speed estimation, computer vision, traffic camera, feature tracking, vehicle classification |
| dc.description.none.fl_txt_mv |
In this work, we implement a real-time vehicle classification and speed estimation system and apply it to videos acquired from traffic cameras installed in highways. In this approach we: a) Detect moving vehicles through backgroundforeground segmentation techniques. b) Compare different supervised classifiers (e.g. artificial neural networks) for vehicle classification into categories: (car, motorcycle, van, and bus/truck). c) Apply a calibration method to georeference vehicles using satellite images. d) Estimate vehicles speed per class using feature tracking and nearest neighbors algorithms. Facultad de Ingeniería |
| description |
In this work, we implement a real-time vehicle classification and speed estimation system and apply it to videos acquired from traffic cameras installed in highways. In this approach we: a) Detect moving vehicles through backgroundforeground segmentation techniques. b) Compare different supervised classifiers (e.g. artificial neural networks) for vehicle classification into categories: (car, motorcycle, van, and bus/truck). c) Apply a calibration method to georeference vehicles using satellite images. d) Estimate vehicles speed per class using feature tracking and nearest neighbors algorithms. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-11-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/56425 |
| url |
http://sedici.unlp.edu.ar/handle/10915/56425 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-99994-9-7 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783007188320256 |
| score |
12.982451 |