Vehicle classification and speed estimation using Computer Vision techniques
- Autores
- Yabo, Agustín; Arroyo, Sebastián I.; Safar, Félix G.; Oliva, Damián
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this work, we implement a real-time vehicle classification and speed estimation system and apply it to videos acquired from traffic cameras installed in highways. In this approach we: a) Detect moving vehicles through backgroundforeground segmentation techniques. b) Compare different supervised classifiers (e.g. artificial neural networks) for vehicle classification into categories: (car, motorcycle, van, and bus/truck). c) Apply a calibration method to georeference vehicles using satellite images. d) Estimate vehicles speed per class using feature tracking and nearest neighbors algorithms.
Facultad de Ingeniería - Materia
-
Ingeniería
Informática
sistemas de control
speed estimation, computer vision, traffic camera, feature tracking, vehicle classification - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/56425
Ver los metadatos del registro completo
id |
SEDICI_0a89f970f7e6b9bf76b3e569ba4cf5af |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/56425 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Vehicle classification and speed estimation using Computer Vision techniquesYabo, AgustínArroyo, Sebastián I.Safar, Félix G.Oliva, DamiánIngenieríaInformáticasistemas de controlspeed estimation, computer vision, traffic camera, feature tracking, vehicle classificationIn this work, we implement a real-time vehicle classification and speed estimation system and apply it to videos acquired from traffic cameras installed in highways. In this approach we: a) Detect moving vehicles through backgroundforeground segmentation techniques. b) Compare different supervised classifiers (e.g. artificial neural networks) for vehicle classification into categories: (car, motorcycle, van, and bus/truck). c) Apply a calibration method to georeference vehicles using satellite images. d) Estimate vehicles speed per class using feature tracking and nearest neighbors algorithms.Facultad de Ingeniería2016-11-03info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/56425enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-99994-9-7info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:38:41Zoai:sedici.unlp.edu.ar:10915/56425Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:38:41.537SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Vehicle classification and speed estimation using Computer Vision techniques |
title |
Vehicle classification and speed estimation using Computer Vision techniques |
spellingShingle |
Vehicle classification and speed estimation using Computer Vision techniques Yabo, Agustín Ingeniería Informática sistemas de control speed estimation, computer vision, traffic camera, feature tracking, vehicle classification |
title_short |
Vehicle classification and speed estimation using Computer Vision techniques |
title_full |
Vehicle classification and speed estimation using Computer Vision techniques |
title_fullStr |
Vehicle classification and speed estimation using Computer Vision techniques |
title_full_unstemmed |
Vehicle classification and speed estimation using Computer Vision techniques |
title_sort |
Vehicle classification and speed estimation using Computer Vision techniques |
dc.creator.none.fl_str_mv |
Yabo, Agustín Arroyo, Sebastián I. Safar, Félix G. Oliva, Damián |
author |
Yabo, Agustín |
author_facet |
Yabo, Agustín Arroyo, Sebastián I. Safar, Félix G. Oliva, Damián |
author_role |
author |
author2 |
Arroyo, Sebastián I. Safar, Félix G. Oliva, Damián |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ingeniería Informática sistemas de control speed estimation, computer vision, traffic camera, feature tracking, vehicle classification |
topic |
Ingeniería Informática sistemas de control speed estimation, computer vision, traffic camera, feature tracking, vehicle classification |
dc.description.none.fl_txt_mv |
In this work, we implement a real-time vehicle classification and speed estimation system and apply it to videos acquired from traffic cameras installed in highways. In this approach we: a) Detect moving vehicles through backgroundforeground segmentation techniques. b) Compare different supervised classifiers (e.g. artificial neural networks) for vehicle classification into categories: (car, motorcycle, van, and bus/truck). c) Apply a calibration method to georeference vehicles using satellite images. d) Estimate vehicles speed per class using feature tracking and nearest neighbors algorithms. Facultad de Ingeniería |
description |
In this work, we implement a real-time vehicle classification and speed estimation system and apply it to videos acquired from traffic cameras installed in highways. In this approach we: a) Detect moving vehicles through backgroundforeground segmentation techniques. b) Compare different supervised classifiers (e.g. artificial neural networks) for vehicle classification into categories: (car, motorcycle, van, and bus/truck). c) Apply a calibration method to georeference vehicles using satellite images. d) Estimate vehicles speed per class using feature tracking and nearest neighbors algorithms. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/56425 |
url |
http://sedici.unlp.edu.ar/handle/10915/56425 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-99994-9-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260246846767104 |
score |
13.13397 |