Dynamics of nano beams with attached masses randomly distributed
- Autores
- Piovan, Marcelo T.; Da Rosa, María Anna; Lippiello, Maria
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this paper we analyze the dynamic behavior of micro/nano beams with attached masses distributed in a random field. A model of shear deformable micro beam is employed as the basis for deterministic calculations that are carried out in the context of the finite element method. The deterministic model is developed under the frame of non-local elasticity. Attached masses modify the vibratory pattern of unloaded nano-beams, and by the way conveying the possibility to detect alterations (this is the way in which nano-sensors can detect the presence of biomolecules or other nano-particles). The variability of mass and/or the stiffness properties of the nano- beam are assumed as random parameters or random fields taking into account the elastic coupling between bending and shear in the contexts of non-local approaches. The probabilistic model is constructed, under the basis of a first-order-shear-deformation (FOST) beam theory, appealing to the Maximum Entropy Principle in order to derive the probability density functions, according to increasing levels of entropy (i.e. with less number of constraints or less information). The analysis is performed in the frequency domain by comparing the probabilistic models with different levels of information (i.e., given the mean and/or the bounds, etc.) with previously developed probabilistic approaches such as the ones with parametric uncertainty.
Publicado en: Mecánica Computacional vol. XXXV, no. 22
Facultad de Ingeniería - Materia
-
Ingeniería
Micro/nano beams
FOST
Nonlocal elasticity
Frequency analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/103823
Ver los metadatos del registro completo
| id |
SEDICI_ca89fca44c7a58430fd46c4cef9c1d82 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/103823 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Dynamics of nano beams with attached masses randomly distributedPiovan, Marcelo T.Da Rosa, María AnnaLippiello, MariaIngenieríaMicro/nano beamsFOSTNonlocal elasticityFrequency analysisIn this paper we analyze the dynamic behavior of micro/nano beams with attached masses distributed in a random field. A model of shear deformable micro beam is employed as the basis for deterministic calculations that are carried out in the context of the finite element method. The deterministic model is developed under the frame of non-local elasticity. Attached masses modify the vibratory pattern of unloaded nano-beams, and by the way conveying the possibility to detect alterations (this is the way in which nano-sensors can detect the presence of biomolecules or other nano-particles). The variability of mass and/or the stiffness properties of the nano- beam are assumed as random parameters or random fields taking into account the elastic coupling between bending and shear in the contexts of non-local approaches. The probabilistic model is constructed, under the basis of a first-order-shear-deformation (FOST) beam theory, appealing to the Maximum Entropy Principle in order to derive the probability density functions, according to increasing levels of entropy (i.e. with less number of constraints or less information). The analysis is performed in the frequency domain by comparing the probabilistic models with different levels of information (i.e., given the mean and/or the bounds, etc.) with previously developed probabilistic approaches such as the ones with parametric uncertainty.Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 22Facultad de Ingeniería2017-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1245-1245http://sedici.unlp.edu.ar/handle/10915/103823enginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5342info:eu-repo/semantics/altIdentifier/issn/2591-3522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:03:27Zoai:sedici.unlp.edu.ar:10915/103823Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:03:27.332SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Dynamics of nano beams with attached masses randomly distributed |
| title |
Dynamics of nano beams with attached masses randomly distributed |
| spellingShingle |
Dynamics of nano beams with attached masses randomly distributed Piovan, Marcelo T. Ingeniería Micro/nano beams FOST Nonlocal elasticity Frequency analysis |
| title_short |
Dynamics of nano beams with attached masses randomly distributed |
| title_full |
Dynamics of nano beams with attached masses randomly distributed |
| title_fullStr |
Dynamics of nano beams with attached masses randomly distributed |
| title_full_unstemmed |
Dynamics of nano beams with attached masses randomly distributed |
| title_sort |
Dynamics of nano beams with attached masses randomly distributed |
| dc.creator.none.fl_str_mv |
Piovan, Marcelo T. Da Rosa, María Anna Lippiello, Maria |
| author |
Piovan, Marcelo T. |
| author_facet |
Piovan, Marcelo T. Da Rosa, María Anna Lippiello, Maria |
| author_role |
author |
| author2 |
Da Rosa, María Anna Lippiello, Maria |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ingeniería Micro/nano beams FOST Nonlocal elasticity Frequency analysis |
| topic |
Ingeniería Micro/nano beams FOST Nonlocal elasticity Frequency analysis |
| dc.description.none.fl_txt_mv |
In this paper we analyze the dynamic behavior of micro/nano beams with attached masses distributed in a random field. A model of shear deformable micro beam is employed as the basis for deterministic calculations that are carried out in the context of the finite element method. The deterministic model is developed under the frame of non-local elasticity. Attached masses modify the vibratory pattern of unloaded nano-beams, and by the way conveying the possibility to detect alterations (this is the way in which nano-sensors can detect the presence of biomolecules or other nano-particles). The variability of mass and/or the stiffness properties of the nano- beam are assumed as random parameters or random fields taking into account the elastic coupling between bending and shear in the contexts of non-local approaches. The probabilistic model is constructed, under the basis of a first-order-shear-deformation (FOST) beam theory, appealing to the Maximum Entropy Principle in order to derive the probability density functions, according to increasing levels of entropy (i.e. with less number of constraints or less information). The analysis is performed in the frequency domain by comparing the probabilistic models with different levels of information (i.e., given the mean and/or the bounds, etc.) with previously developed probabilistic approaches such as the ones with parametric uncertainty. Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 22 Facultad de Ingeniería |
| description |
In this paper we analyze the dynamic behavior of micro/nano beams with attached masses distributed in a random field. A model of shear deformable micro beam is employed as the basis for deterministic calculations that are carried out in the context of the finite element method. The deterministic model is developed under the frame of non-local elasticity. Attached masses modify the vibratory pattern of unloaded nano-beams, and by the way conveying the possibility to detect alterations (this is the way in which nano-sensors can detect the presence of biomolecules or other nano-particles). The variability of mass and/or the stiffness properties of the nano- beam are assumed as random parameters or random fields taking into account the elastic coupling between bending and shear in the contexts of non-local approaches. The probabilistic model is constructed, under the basis of a first-order-shear-deformation (FOST) beam theory, appealing to the Maximum Entropy Principle in order to derive the probability density functions, according to increasing levels of entropy (i.e. with less number of constraints or less information). The analysis is performed in the frequency domain by comparing the probabilistic models with different levels of information (i.e., given the mean and/or the bounds, etc.) with previously developed probabilistic approaches such as the ones with parametric uncertainty. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Resumen http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/103823 |
| url |
http://sedici.unlp.edu.ar/handle/10915/103823 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5342 info:eu-repo/semantics/altIdentifier/issn/2591-3522 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 1245-1245 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783301103124480 |
| score |
12.982451 |