Dynamics of curved thin-walled composite beams: uncertainty quantification due to randomly distributed thermal/hygroscopic aspects

Autores
Piovan, Marcelo T.; Sampaio, Rubens
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In this paper we analyze the dynamic behavior of curved thin walled composite beams considering hygroscopic and thermal effects in the constitutive equations. A model of curved thin walled beam is employed as the basis for deterministic calculations which are performed in the context of finite element approaches. This model takes into account shear deformation due to bending and non-uniform torsion, also it incorporates the effect of hygro-thermal stresses and strains in the classical way, however considering them as uncertain due to the randomness associated with the material of the matrix resin (normally sensitive to the absorption of humidity) while the composite beam is constructed or while the structure is under service. The variability of the stiffness and mass properties of the composite beam is assumed as a random field along the structure taking into account the elastic coupling between bending, twisting, shear and axial motions together with the thermal and hygroscopics terms. The probabilistic model is constructed appealing to the Maximum Entropy Principle in order to derive the marginal probability density functions, according to increasing levels of entropy, i.e. with less number of constraints or less information. The analysis is performed in the frequency domain and the buckling loads by comparing the probabilistic models with different levels of information (i.e., given the mean and/or the bounds, etc.) with previously developed probabilistic approaches such as the ones with parametric uncertainty. Also the Entropy of the response is evaluated in order to quantify the propagation of uncertainty in the information of the model. A number of different hygroscopic sensitive composites are evaluated and the dynamic response of the structure constructed with them is compared with the homonymous case of a perfectly dry specimen of the same volumetric fraction of reinforcement.
Publicado en: Mecánica Computacional vol. XXXV, no. 22
Facultad de Ingeniería
Materia
Ingeniería
Curved thin walled composite beams
Uncertainty quantification
Hygroscopic effects
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/103827

id SEDICI_b9406815cf202a5c1660d10e28274114
oai_identifier_str oai:sedici.unlp.edu.ar:10915/103827
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Dynamics of curved thin-walled composite beams: uncertainty quantification due to randomly distributed thermal/hygroscopic aspectsPiovan, Marcelo T.Sampaio, RubensIngenieríaCurved thin walled composite beamsUncertainty quantificationHygroscopic effectsIn this paper we analyze the dynamic behavior of curved thin walled composite beams considering hygroscopic and thermal effects in the constitutive equations. A model of curved thin walled beam is employed as the basis for deterministic calculations which are performed in the context of finite element approaches. This model takes into account shear deformation due to bending and non-uniform torsion, also it incorporates the effect of hygro-thermal stresses and strains in the classical way, however considering them as uncertain due to the randomness associated with the material of the matrix resin (normally sensitive to the absorption of humidity) while the composite beam is constructed or while the structure is under service. The variability of the stiffness and mass properties of the composite beam is assumed as a random field along the structure taking into account the elastic coupling between bending, twisting, shear and axial motions together with the thermal and hygroscopics terms. The probabilistic model is constructed appealing to the Maximum Entropy Principle in order to derive the marginal probability density functions, according to increasing levels of entropy, i.e. with less number of constraints or less information. The analysis is performed in the frequency domain and the buckling loads by comparing the probabilistic models with different levels of information (i.e., given the mean and/or the bounds, etc.) with previously developed probabilistic approaches such as the ones with parametric uncertainty. Also the Entropy of the response is evaluated in order to quantify the propagation of uncertainty in the information of the model. A number of different hygroscopic sensitive composites are evaluated and the dynamic response of the structure constructed with them is compared with the homonymous case of a perfectly dry specimen of the same volumetric fraction of reinforcement.Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 22Facultad de Ingeniería2017-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1247-1247http://sedici.unlp.edu.ar/handle/10915/103827enginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5343info:eu-repo/semantics/altIdentifier/issn/2591-3522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:22:37Zoai:sedici.unlp.edu.ar:10915/103827Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:22:38.03SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Dynamics of curved thin-walled composite beams: uncertainty quantification due to randomly distributed thermal/hygroscopic aspects
title Dynamics of curved thin-walled composite beams: uncertainty quantification due to randomly distributed thermal/hygroscopic aspects
spellingShingle Dynamics of curved thin-walled composite beams: uncertainty quantification due to randomly distributed thermal/hygroscopic aspects
Piovan, Marcelo T.
Ingeniería
Curved thin walled composite beams
Uncertainty quantification
Hygroscopic effects
title_short Dynamics of curved thin-walled composite beams: uncertainty quantification due to randomly distributed thermal/hygroscopic aspects
title_full Dynamics of curved thin-walled composite beams: uncertainty quantification due to randomly distributed thermal/hygroscopic aspects
title_fullStr Dynamics of curved thin-walled composite beams: uncertainty quantification due to randomly distributed thermal/hygroscopic aspects
title_full_unstemmed Dynamics of curved thin-walled composite beams: uncertainty quantification due to randomly distributed thermal/hygroscopic aspects
title_sort Dynamics of curved thin-walled composite beams: uncertainty quantification due to randomly distributed thermal/hygroscopic aspects
dc.creator.none.fl_str_mv Piovan, Marcelo T.
Sampaio, Rubens
author Piovan, Marcelo T.
author_facet Piovan, Marcelo T.
Sampaio, Rubens
author_role author
author2 Sampaio, Rubens
author2_role author
dc.subject.none.fl_str_mv Ingeniería
Curved thin walled composite beams
Uncertainty quantification
Hygroscopic effects
topic Ingeniería
Curved thin walled composite beams
Uncertainty quantification
Hygroscopic effects
dc.description.none.fl_txt_mv In this paper we analyze the dynamic behavior of curved thin walled composite beams considering hygroscopic and thermal effects in the constitutive equations. A model of curved thin walled beam is employed as the basis for deterministic calculations which are performed in the context of finite element approaches. This model takes into account shear deformation due to bending and non-uniform torsion, also it incorporates the effect of hygro-thermal stresses and strains in the classical way, however considering them as uncertain due to the randomness associated with the material of the matrix resin (normally sensitive to the absorption of humidity) while the composite beam is constructed or while the structure is under service. The variability of the stiffness and mass properties of the composite beam is assumed as a random field along the structure taking into account the elastic coupling between bending, twisting, shear and axial motions together with the thermal and hygroscopics terms. The probabilistic model is constructed appealing to the Maximum Entropy Principle in order to derive the marginal probability density functions, according to increasing levels of entropy, i.e. with less number of constraints or less information. The analysis is performed in the frequency domain and the buckling loads by comparing the probabilistic models with different levels of information (i.e., given the mean and/or the bounds, etc.) with previously developed probabilistic approaches such as the ones with parametric uncertainty. Also the Entropy of the response is evaluated in order to quantify the propagation of uncertainty in the information of the model. A number of different hygroscopic sensitive composites are evaluated and the dynamic response of the structure constructed with them is compared with the homonymous case of a perfectly dry specimen of the same volumetric fraction of reinforcement.
Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 22
Facultad de Ingeniería
description In this paper we analyze the dynamic behavior of curved thin walled composite beams considering hygroscopic and thermal effects in the constitutive equations. A model of curved thin walled beam is employed as the basis for deterministic calculations which are performed in the context of finite element approaches. This model takes into account shear deformation due to bending and non-uniform torsion, also it incorporates the effect of hygro-thermal stresses and strains in the classical way, however considering them as uncertain due to the randomness associated with the material of the matrix resin (normally sensitive to the absorption of humidity) while the composite beam is constructed or while the structure is under service. The variability of the stiffness and mass properties of the composite beam is assumed as a random field along the structure taking into account the elastic coupling between bending, twisting, shear and axial motions together with the thermal and hygroscopics terms. The probabilistic model is constructed appealing to the Maximum Entropy Principle in order to derive the marginal probability density functions, according to increasing levels of entropy, i.e. with less number of constraints or less information. The analysis is performed in the frequency domain and the buckling loads by comparing the probabilistic models with different levels of information (i.e., given the mean and/or the bounds, etc.) with previously developed probabilistic approaches such as the ones with parametric uncertainty. Also the Entropy of the response is evaluated in order to quantify the propagation of uncertainty in the information of the model. A number of different hygroscopic sensitive composites are evaluated and the dynamic response of the structure constructed with them is compared with the homonymous case of a perfectly dry specimen of the same volumetric fraction of reinforcement.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Resumen
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/103827
url http://sedici.unlp.edu.ar/handle/10915/103827
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5343
info:eu-repo/semantics/altIdentifier/issn/2591-3522
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1247-1247
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616102110298112
score 13.070432