Network effects error components models

Autores
Montes Rojas, Gabriel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This paper develops a random effects error components structure for network data regression models. In particular, it allows for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the variance-covariance matrix. Network effects will typically imply heteroskedasticity, and as with the Moulton factor, the key role is given by the joint consideration of the intra-network correlation of the error term(s) and the covariates. Then it proposes consistent estimator of the variance components and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show the tests have very good performance in finite samples.
Facultad de Ciencias Económicas
Materia
Ciencias Económicas
Networks
Clusters
Moulton factor
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/169449

id SEDICI_c951c238cb98e8cc5cde99d1d4e98017
oai_identifier_str oai:sedici.unlp.edu.ar:10915/169449
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Network effects error components modelsMontes Rojas, GabrielCiencias EconómicasNetworksClustersMoulton factorThis paper develops a random effects error components structure for network data regression models. In particular, it allows for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the variance-covariance matrix. Network effects will typically imply heteroskedasticity, and as with the Moulton factor, the key role is given by the joint consideration of the intra-network correlation of the error term(s) and the covariates. Then it proposes consistent estimator of the variance components and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show the tests have very good performance in finite samples.Facultad de Ciencias Económicas2018-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/169449enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-28590-6-0info:eu-repo/semantics/altIdentifier/url/https://bd.aaep.org.ar/anales/works/works2018/montes.pdfinfo:eu-repo/semantics/altIdentifier/issn/1852-0022info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:43:26Zoai:sedici.unlp.edu.ar:10915/169449Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:43:27.1SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Network effects error components models
title Network effects error components models
spellingShingle Network effects error components models
Montes Rojas, Gabriel
Ciencias Económicas
Networks
Clusters
Moulton factor
title_short Network effects error components models
title_full Network effects error components models
title_fullStr Network effects error components models
title_full_unstemmed Network effects error components models
title_sort Network effects error components models
dc.creator.none.fl_str_mv Montes Rojas, Gabriel
author Montes Rojas, Gabriel
author_facet Montes Rojas, Gabriel
author_role author
dc.subject.none.fl_str_mv Ciencias Económicas
Networks
Clusters
Moulton factor
topic Ciencias Económicas
Networks
Clusters
Moulton factor
dc.description.none.fl_txt_mv This paper develops a random effects error components structure for network data regression models. In particular, it allows for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the variance-covariance matrix. Network effects will typically imply heteroskedasticity, and as with the Moulton factor, the key role is given by the joint consideration of the intra-network correlation of the error term(s) and the covariates. Then it proposes consistent estimator of the variance components and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show the tests have very good performance in finite samples.
Facultad de Ciencias Económicas
description This paper develops a random effects error components structure for network data regression models. In particular, it allows for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the variance-covariance matrix. Network effects will typically imply heteroskedasticity, and as with the Moulton factor, the key role is given by the joint consideration of the intra-network correlation of the error term(s) and the covariates. Then it proposes consistent estimator of the variance components and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show the tests have very good performance in finite samples.
publishDate 2018
dc.date.none.fl_str_mv 2018-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/169449
url http://sedici.unlp.edu.ar/handle/10915/169449
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-28590-6-0
info:eu-repo/semantics/altIdentifier/url/https://bd.aaep.org.ar/anales/works/works2018/montes.pdf
info:eu-repo/semantics/altIdentifier/issn/1852-0022
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616303167406080
score 13.070432