Network effects error components models
- Autores
- Montes Rojas, Gabriel Victorio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper develops a random effects error components structure fornetwork data regression models. In particular, it allows for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the variance-covariance matrix. Network effects will typically imply heteroskedasticity, and as with the Moulton factor, the key role is given by the joint consideration of the intra-network correlation of the error term(s) and the covariates. Then it proposes consistent estimator of the variance components and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show the tests have very good performance in finite samples.
Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina
LIII Conferencia Anual de la Asociación Argentina de Economía Política
La Plata
Argentina
Asociación Argentina de Economía Política - Materia
-
NETWORKS
RANDOM EFFECTS
Clusters
Moulton factor - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/155201
Ver los metadatos del registro completo
id |
CONICETDig_eb36ca623f1272eda023f04df7ef29db |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/155201 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Network effects error components modelsMontes Rojas, Gabriel VictorioNETWORKSRANDOM EFFECTSClustersMoulton factorhttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5This paper develops a random effects error components structure fornetwork data regression models. In particular, it allows for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the variance-covariance matrix. Network effects will typically imply heteroskedasticity, and as with the Moulton factor, the key role is given by the joint consideration of the intra-network correlation of the error term(s) and the covariates. Then it proposes consistent estimator of the variance components and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show the tests have very good performance in finite samples.Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; ArgentinaLIII Conferencia Anual de la Asociación Argentina de Economía PolíticaLa PlataArgentinaAsociación Argentina de Economía PolíticaAsociación Argentina de Economía Política2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/155201Network effects error components models; LIII Conferencia Anual de la Asociación Argentina de Economía Política; La Plata; Argentina; 2018; 169-169CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aaep.org.ar/anales/download/2018/LibroResumenes2018d.pdfinfo:eu-repo/semantics/altIdentifier/url/https://aaep.org.ar/site/reunion2018.htmlNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:00:00Zoai:ri.conicet.gov.ar:11336/155201instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:00:00.668CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Network effects error components models |
title |
Network effects error components models |
spellingShingle |
Network effects error components models Montes Rojas, Gabriel Victorio NETWORKS RANDOM EFFECTS Clusters Moulton factor |
title_short |
Network effects error components models |
title_full |
Network effects error components models |
title_fullStr |
Network effects error components models |
title_full_unstemmed |
Network effects error components models |
title_sort |
Network effects error components models |
dc.creator.none.fl_str_mv |
Montes Rojas, Gabriel Victorio |
author |
Montes Rojas, Gabriel Victorio |
author_facet |
Montes Rojas, Gabriel Victorio |
author_role |
author |
dc.subject.none.fl_str_mv |
NETWORKS RANDOM EFFECTS Clusters Moulton factor |
topic |
NETWORKS RANDOM EFFECTS Clusters Moulton factor |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
This paper develops a random effects error components structure fornetwork data regression models. In particular, it allows for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the variance-covariance matrix. Network effects will typically imply heteroskedasticity, and as with the Moulton factor, the key role is given by the joint consideration of the intra-network correlation of the error term(s) and the covariates. Then it proposes consistent estimator of the variance components and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show the tests have very good performance in finite samples. Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina LIII Conferencia Anual de la Asociación Argentina de Economía Política La Plata Argentina Asociación Argentina de Economía Política |
description |
This paper develops a random effects error components structure fornetwork data regression models. In particular, it allows for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the variance-covariance matrix. Network effects will typically imply heteroskedasticity, and as with the Moulton factor, the key role is given by the joint consideration of the intra-network correlation of the error term(s) and the covariates. Then it proposes consistent estimator of the variance components and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show the tests have very good performance in finite samples. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/155201 Network effects error components models; LIII Conferencia Anual de la Asociación Argentina de Economía Política; La Plata; Argentina; 2018; 169-169 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/155201 |
identifier_str_mv |
Network effects error components models; LIII Conferencia Anual de la Asociación Argentina de Economía Política; La Plata; Argentina; 2018; 169-169 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://aaep.org.ar/anales/download/2018/LibroResumenes2018d.pdf info:eu-repo/semantics/altIdentifier/url/https://aaep.org.ar/site/reunion2018.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Economía Política |
publisher.none.fl_str_mv |
Asociación Argentina de Economía Política |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613776473587712 |
score |
13.070432 |