Likelihood Map Waveform Tracking Performance for GNSS-R Ocean Altimetry
- Autores
- Ozafrain, Santiago; Roncagliolo, Pedro Agustín; Muravchik, Carlos Horacio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Ocean altimetry with Global Navigation Satellite Systems signals (GNSS) signals is a remote sensing technique that measures the height of the sea surface through the difference in path length of the direct and reflected signal. Code altimetry estimates this parameter by tracking the code delay after performing correlations with a GNSS signal replica. It is of limited precision due to the low signal-to-noise ratio (SNR) and narrow bandwidth of the ocean-reflected GNSS signal. However, the potential advantages of the GNSS-R systems such as high temporal resolution and spatial coverage are a motivation to improve its altimetric precision. In this article, we present a performance assessment of the Likelihood Map Waveform tracking technique, a method based on Maximum Likelihood Estimation theory that exploits the available reflected power in a more efficient way than the single tracking point methods. We use a modification of the theoretical optimal solution that achieves a better performance than previous methods. We estimate it, in terms of SNR gain, using Monte Carlo method with a detailed stochastic model of the signal, and with actual signals from the Cyclone Global Navigation Satellite System. The gain values obtained were between 1.64 and 3.66 dB in the theoretical analysis, and between 1.69 and 2.62 dB with the real data, confirming the potential of the proposed approach.
Facultad de Ingeniería
Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales - Materia
-
Ingeniería
Ingeniería Electrónica
GNSS+R
Low Earth Orbit (LEO)
Maximum likelihood estimation
Ocean altimetry
Remote sensing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/123755
Ver los metadatos del registro completo
id |
SEDICI_c46e60a1833b55567100bc8910a70900 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/123755 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Likelihood Map Waveform Tracking Performance for GNSS-R Ocean AltimetryOzafrain, SantiagoRoncagliolo, Pedro AgustínMuravchik, Carlos HoracioIngenieríaIngeniería ElectrónicaGNSS+RLow Earth Orbit (LEO)Maximum likelihood estimationOcean altimetryRemote sensingOcean altimetry with Global Navigation Satellite Systems signals (GNSS) signals is a remote sensing technique that measures the height of the sea surface through the difference in path length of the direct and reflected signal. Code altimetry estimates this parameter by tracking the code delay after performing correlations with a GNSS signal replica. It is of limited precision due to the low signal-to-noise ratio (SNR) and narrow bandwidth of the ocean-reflected GNSS signal. However, the potential advantages of the GNSS-R systems such as high temporal resolution and spatial coverage are a motivation to improve its altimetric precision. In this article, we present a performance assessment of the Likelihood Map Waveform tracking technique, a method based on Maximum Likelihood Estimation theory that exploits the available reflected power in a more efficient way than the single tracking point methods. We use a modification of the theoretical optimal solution that achieves a better performance than previous methods. We estimate it, in terms of SNR gain, using Monte Carlo method with a detailed stochastic model of the signal, and with actual signals from the Cyclone Global Navigation Satellite System. The gain values obtained were between 1.64 and 3.66 dB in the theoretical analysis, and between 1.69 and 2.62 dB with the real data, confirming the potential of the proposed approach.Facultad de IngenieríaInstituto de Investigaciones en Electrónica, Control y Procesamiento de Señales2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf5379-5384http://sedici.unlp.edu.ar/handle/10915/123755enginfo:eu-repo/semantics/altIdentifier/issn/1939-1404info:eu-repo/semantics/altIdentifier/issn/2151-1535info:eu-repo/semantics/altIdentifier/doi/10.1109/jstars.2019.2963559info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:01:34Zoai:sedici.unlp.edu.ar:10915/123755Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:01:35.239SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Likelihood Map Waveform Tracking Performance for GNSS-R Ocean Altimetry |
title |
Likelihood Map Waveform Tracking Performance for GNSS-R Ocean Altimetry |
spellingShingle |
Likelihood Map Waveform Tracking Performance for GNSS-R Ocean Altimetry Ozafrain, Santiago Ingeniería Ingeniería Electrónica GNSS+R Low Earth Orbit (LEO) Maximum likelihood estimation Ocean altimetry Remote sensing |
title_short |
Likelihood Map Waveform Tracking Performance for GNSS-R Ocean Altimetry |
title_full |
Likelihood Map Waveform Tracking Performance for GNSS-R Ocean Altimetry |
title_fullStr |
Likelihood Map Waveform Tracking Performance for GNSS-R Ocean Altimetry |
title_full_unstemmed |
Likelihood Map Waveform Tracking Performance for GNSS-R Ocean Altimetry |
title_sort |
Likelihood Map Waveform Tracking Performance for GNSS-R Ocean Altimetry |
dc.creator.none.fl_str_mv |
Ozafrain, Santiago Roncagliolo, Pedro Agustín Muravchik, Carlos Horacio |
author |
Ozafrain, Santiago |
author_facet |
Ozafrain, Santiago Roncagliolo, Pedro Agustín Muravchik, Carlos Horacio |
author_role |
author |
author2 |
Roncagliolo, Pedro Agustín Muravchik, Carlos Horacio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ingeniería Ingeniería Electrónica GNSS+R Low Earth Orbit (LEO) Maximum likelihood estimation Ocean altimetry Remote sensing |
topic |
Ingeniería Ingeniería Electrónica GNSS+R Low Earth Orbit (LEO) Maximum likelihood estimation Ocean altimetry Remote sensing |
dc.description.none.fl_txt_mv |
Ocean altimetry with Global Navigation Satellite Systems signals (GNSS) signals is a remote sensing technique that measures the height of the sea surface through the difference in path length of the direct and reflected signal. Code altimetry estimates this parameter by tracking the code delay after performing correlations with a GNSS signal replica. It is of limited precision due to the low signal-to-noise ratio (SNR) and narrow bandwidth of the ocean-reflected GNSS signal. However, the potential advantages of the GNSS-R systems such as high temporal resolution and spatial coverage are a motivation to improve its altimetric precision. In this article, we present a performance assessment of the Likelihood Map Waveform tracking technique, a method based on Maximum Likelihood Estimation theory that exploits the available reflected power in a more efficient way than the single tracking point methods. We use a modification of the theoretical optimal solution that achieves a better performance than previous methods. We estimate it, in terms of SNR gain, using Monte Carlo method with a detailed stochastic model of the signal, and with actual signals from the Cyclone Global Navigation Satellite System. The gain values obtained were between 1.64 and 3.66 dB in the theoretical analysis, and between 1.69 and 2.62 dB with the real data, confirming the potential of the proposed approach. Facultad de Ingeniería Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales |
description |
Ocean altimetry with Global Navigation Satellite Systems signals (GNSS) signals is a remote sensing technique that measures the height of the sea surface through the difference in path length of the direct and reflected signal. Code altimetry estimates this parameter by tracking the code delay after performing correlations with a GNSS signal replica. It is of limited precision due to the low signal-to-noise ratio (SNR) and narrow bandwidth of the ocean-reflected GNSS signal. However, the potential advantages of the GNSS-R systems such as high temporal resolution and spatial coverage are a motivation to improve its altimetric precision. In this article, we present a performance assessment of the Likelihood Map Waveform tracking technique, a method based on Maximum Likelihood Estimation theory that exploits the available reflected power in a more efficient way than the single tracking point methods. We use a modification of the theoretical optimal solution that achieves a better performance than previous methods. We estimate it, in terms of SNR gain, using Monte Carlo method with a detailed stochastic model of the signal, and with actual signals from the Cyclone Global Navigation Satellite System. The gain values obtained were between 1.64 and 3.66 dB in the theoretical analysis, and between 1.69 and 2.62 dB with the real data, confirming the potential of the proposed approach. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/123755 |
url |
http://sedici.unlp.edu.ar/handle/10915/123755 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1939-1404 info:eu-repo/semantics/altIdentifier/issn/2151-1535 info:eu-repo/semantics/altIdentifier/doi/10.1109/jstars.2019.2963559 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 5379-5384 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260512782417920 |
score |
13.13397 |