Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing

Autores
Henn, Santiago Martín; Fraire, Juan Andres; Hermanns, Holger
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Satellite coverage analysis is a fundamental performance assessment element in remote sensing and communications´ services projects. Coverage is a key parameter in the constellation operation and design for missions relying on several satellites. Since coverage areas over the surface of the Earth change with time, intersecting and drifting apart, the dynamics of every satellite influence the constellation´s behavior as a whole. For this reason, every configuration change, be it in the number of satellites or their relative positions, heavily impacts the cost/performance of the mission. This article presents a constellation-To-ground coverage analysis model that enables the rapid evaluation of areas on the surface of the Earth. The method leverages geodetic projections and an oblate-Earth model and uses dynamic transformation and antitransformation techniques combined with polygon Boolean operations. Timestamped datasets are obtained to account for the dynamics of the scenario, which can be exploited in statistical coverage analysis of the constellation. Our empirical evaluations show that this approach is superior in accuracy and computation effort compared with the traditional net-point techniques. While net-point approaches are at the core of the state-of-The-Art commercial software, they are approximate. We show that, for finer grid granularity, the net-point schemes converge to our polygon-based results.
Fil: Henn, Santiago Martín. Universidad Nacional de Córdoba; Argentina
Fil: Fraire, Juan Andres. Universidad Nacional de Córdoba; Argentina. Universite Lyon 2; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hermanns, Holger. Universitat Saarland; Alemania
Materia
COVERAGE COMPUTATION
LOW EARTH ORBIT (LEO) SATELLITE
SATELLITE CONSTELLATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/222755

id CONICETDig_94ab33d26b5615d4b2f3d55a40e6b509
oai_identifier_str oai:ri.conicet.gov.ar:11336/222755
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Polygon-Based Algorithms for N-Satellite Constellations Coverage ComputingHenn, Santiago MartínFraire, Juan AndresHermanns, HolgerCOVERAGE COMPUTATIONLOW EARTH ORBIT (LEO) SATELLITESATELLITE CONSTELLATIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Satellite coverage analysis is a fundamental performance assessment element in remote sensing and communications´ services projects. Coverage is a key parameter in the constellation operation and design for missions relying on several satellites. Since coverage areas over the surface of the Earth change with time, intersecting and drifting apart, the dynamics of every satellite influence the constellation´s behavior as a whole. For this reason, every configuration change, be it in the number of satellites or their relative positions, heavily impacts the cost/performance of the mission. This article presents a constellation-To-ground coverage analysis model that enables the rapid evaluation of areas on the surface of the Earth. The method leverages geodetic projections and an oblate-Earth model and uses dynamic transformation and antitransformation techniques combined with polygon Boolean operations. Timestamped datasets are obtained to account for the dynamics of the scenario, which can be exploited in statistical coverage analysis of the constellation. Our empirical evaluations show that this approach is superior in accuracy and computation effort compared with the traditional net-point techniques. While net-point approaches are at the core of the state-of-The-Art commercial software, they are approximate. We show that, for finer grid granularity, the net-point schemes converge to our polygon-based results.Fil: Henn, Santiago Martín. Universidad Nacional de Córdoba; ArgentinaFil: Fraire, Juan Andres. Universidad Nacional de Córdoba; Argentina. Universite Lyon 2; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hermanns, Holger. Universitat Saarland; AlemaniaInstitute of Electrical and Electronics Engineers2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/222755Henn, Santiago Martín; Fraire, Juan Andres; Hermanns, Holger; Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing; Institute of Electrical and Electronics Engineers; IEEE Transactions on Aerospace and Electronic Systems; 59; 5; 10-2023; 7166-71820018-9251CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/TAES.2023.3289479info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10163895info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:18Zoai:ri.conicet.gov.ar:11336/222755instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:19.193CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing
title Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing
spellingShingle Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing
Henn, Santiago Martín
COVERAGE COMPUTATION
LOW EARTH ORBIT (LEO) SATELLITE
SATELLITE CONSTELLATIONS
title_short Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing
title_full Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing
title_fullStr Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing
title_full_unstemmed Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing
title_sort Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing
dc.creator.none.fl_str_mv Henn, Santiago Martín
Fraire, Juan Andres
Hermanns, Holger
author Henn, Santiago Martín
author_facet Henn, Santiago Martín
Fraire, Juan Andres
Hermanns, Holger
author_role author
author2 Fraire, Juan Andres
Hermanns, Holger
author2_role author
author
dc.subject.none.fl_str_mv COVERAGE COMPUTATION
LOW EARTH ORBIT (LEO) SATELLITE
SATELLITE CONSTELLATIONS
topic COVERAGE COMPUTATION
LOW EARTH ORBIT (LEO) SATELLITE
SATELLITE CONSTELLATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Satellite coverage analysis is a fundamental performance assessment element in remote sensing and communications´ services projects. Coverage is a key parameter in the constellation operation and design for missions relying on several satellites. Since coverage areas over the surface of the Earth change with time, intersecting and drifting apart, the dynamics of every satellite influence the constellation´s behavior as a whole. For this reason, every configuration change, be it in the number of satellites or their relative positions, heavily impacts the cost/performance of the mission. This article presents a constellation-To-ground coverage analysis model that enables the rapid evaluation of areas on the surface of the Earth. The method leverages geodetic projections and an oblate-Earth model and uses dynamic transformation and antitransformation techniques combined with polygon Boolean operations. Timestamped datasets are obtained to account for the dynamics of the scenario, which can be exploited in statistical coverage analysis of the constellation. Our empirical evaluations show that this approach is superior in accuracy and computation effort compared with the traditional net-point techniques. While net-point approaches are at the core of the state-of-The-Art commercial software, they are approximate. We show that, for finer grid granularity, the net-point schemes converge to our polygon-based results.
Fil: Henn, Santiago Martín. Universidad Nacional de Córdoba; Argentina
Fil: Fraire, Juan Andres. Universidad Nacional de Córdoba; Argentina. Universite Lyon 2; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hermanns, Holger. Universitat Saarland; Alemania
description Satellite coverage analysis is a fundamental performance assessment element in remote sensing and communications´ services projects. Coverage is a key parameter in the constellation operation and design for missions relying on several satellites. Since coverage areas over the surface of the Earth change with time, intersecting and drifting apart, the dynamics of every satellite influence the constellation´s behavior as a whole. For this reason, every configuration change, be it in the number of satellites or their relative positions, heavily impacts the cost/performance of the mission. This article presents a constellation-To-ground coverage analysis model that enables the rapid evaluation of areas on the surface of the Earth. The method leverages geodetic projections and an oblate-Earth model and uses dynamic transformation and antitransformation techniques combined with polygon Boolean operations. Timestamped datasets are obtained to account for the dynamics of the scenario, which can be exploited in statistical coverage analysis of the constellation. Our empirical evaluations show that this approach is superior in accuracy and computation effort compared with the traditional net-point techniques. While net-point approaches are at the core of the state-of-The-Art commercial software, they are approximate. We show that, for finer grid granularity, the net-point schemes converge to our polygon-based results.
publishDate 2023
dc.date.none.fl_str_mv 2023-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/222755
Henn, Santiago Martín; Fraire, Juan Andres; Hermanns, Holger; Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing; Institute of Electrical and Electronics Engineers; IEEE Transactions on Aerospace and Electronic Systems; 59; 5; 10-2023; 7166-7182
0018-9251
CONICET Digital
CONICET
url http://hdl.handle.net/11336/222755
identifier_str_mv Henn, Santiago Martín; Fraire, Juan Andres; Hermanns, Holger; Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing; Institute of Electrical and Electronics Engineers; IEEE Transactions on Aerospace and Electronic Systems; 59; 5; 10-2023; 7166-7182
0018-9251
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1109/TAES.2023.3289479
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10163895
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269795163045888
score 13.13397