Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing
- Autores
- Henn, Santiago Martín; Fraire, Juan Andres; Hermanns, Holger
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Satellite coverage analysis is a fundamental performance assessment element in remote sensing and communications´ services projects. Coverage is a key parameter in the constellation operation and design for missions relying on several satellites. Since coverage areas over the surface of the Earth change with time, intersecting and drifting apart, the dynamics of every satellite influence the constellation´s behavior as a whole. For this reason, every configuration change, be it in the number of satellites or their relative positions, heavily impacts the cost/performance of the mission. This article presents a constellation-To-ground coverage analysis model that enables the rapid evaluation of areas on the surface of the Earth. The method leverages geodetic projections and an oblate-Earth model and uses dynamic transformation and antitransformation techniques combined with polygon Boolean operations. Timestamped datasets are obtained to account for the dynamics of the scenario, which can be exploited in statistical coverage analysis of the constellation. Our empirical evaluations show that this approach is superior in accuracy and computation effort compared with the traditional net-point techniques. While net-point approaches are at the core of the state-of-The-Art commercial software, they are approximate. We show that, for finer grid granularity, the net-point schemes converge to our polygon-based results.
Fil: Henn, Santiago Martín. Universidad Nacional de Córdoba; Argentina
Fil: Fraire, Juan Andres. Universidad Nacional de Córdoba; Argentina. Universite Lyon 2; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hermanns, Holger. Universitat Saarland; Alemania - Materia
-
COVERAGE COMPUTATION
LOW EARTH ORBIT (LEO) SATELLITE
SATELLITE CONSTELLATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/222755
Ver los metadatos del registro completo
id |
CONICETDig_94ab33d26b5615d4b2f3d55a40e6b509 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/222755 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Polygon-Based Algorithms for N-Satellite Constellations Coverage ComputingHenn, Santiago MartínFraire, Juan AndresHermanns, HolgerCOVERAGE COMPUTATIONLOW EARTH ORBIT (LEO) SATELLITESATELLITE CONSTELLATIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Satellite coverage analysis is a fundamental performance assessment element in remote sensing and communications´ services projects. Coverage is a key parameter in the constellation operation and design for missions relying on several satellites. Since coverage areas over the surface of the Earth change with time, intersecting and drifting apart, the dynamics of every satellite influence the constellation´s behavior as a whole. For this reason, every configuration change, be it in the number of satellites or their relative positions, heavily impacts the cost/performance of the mission. This article presents a constellation-To-ground coverage analysis model that enables the rapid evaluation of areas on the surface of the Earth. The method leverages geodetic projections and an oblate-Earth model and uses dynamic transformation and antitransformation techniques combined with polygon Boolean operations. Timestamped datasets are obtained to account for the dynamics of the scenario, which can be exploited in statistical coverage analysis of the constellation. Our empirical evaluations show that this approach is superior in accuracy and computation effort compared with the traditional net-point techniques. While net-point approaches are at the core of the state-of-The-Art commercial software, they are approximate. We show that, for finer grid granularity, the net-point schemes converge to our polygon-based results.Fil: Henn, Santiago Martín. Universidad Nacional de Córdoba; ArgentinaFil: Fraire, Juan Andres. Universidad Nacional de Córdoba; Argentina. Universite Lyon 2; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hermanns, Holger. Universitat Saarland; AlemaniaInstitute of Electrical and Electronics Engineers2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/222755Henn, Santiago Martín; Fraire, Juan Andres; Hermanns, Holger; Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing; Institute of Electrical and Electronics Engineers; IEEE Transactions on Aerospace and Electronic Systems; 59; 5; 10-2023; 7166-71820018-9251CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/TAES.2023.3289479info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10163895info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:18Zoai:ri.conicet.gov.ar:11336/222755instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:19.193CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing |
title |
Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing |
spellingShingle |
Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing Henn, Santiago Martín COVERAGE COMPUTATION LOW EARTH ORBIT (LEO) SATELLITE SATELLITE CONSTELLATIONS |
title_short |
Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing |
title_full |
Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing |
title_fullStr |
Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing |
title_full_unstemmed |
Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing |
title_sort |
Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing |
dc.creator.none.fl_str_mv |
Henn, Santiago Martín Fraire, Juan Andres Hermanns, Holger |
author |
Henn, Santiago Martín |
author_facet |
Henn, Santiago Martín Fraire, Juan Andres Hermanns, Holger |
author_role |
author |
author2 |
Fraire, Juan Andres Hermanns, Holger |
author2_role |
author author |
dc.subject.none.fl_str_mv |
COVERAGE COMPUTATION LOW EARTH ORBIT (LEO) SATELLITE SATELLITE CONSTELLATIONS |
topic |
COVERAGE COMPUTATION LOW EARTH ORBIT (LEO) SATELLITE SATELLITE CONSTELLATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Satellite coverage analysis is a fundamental performance assessment element in remote sensing and communications´ services projects. Coverage is a key parameter in the constellation operation and design for missions relying on several satellites. Since coverage areas over the surface of the Earth change with time, intersecting and drifting apart, the dynamics of every satellite influence the constellation´s behavior as a whole. For this reason, every configuration change, be it in the number of satellites or their relative positions, heavily impacts the cost/performance of the mission. This article presents a constellation-To-ground coverage analysis model that enables the rapid evaluation of areas on the surface of the Earth. The method leverages geodetic projections and an oblate-Earth model and uses dynamic transformation and antitransformation techniques combined with polygon Boolean operations. Timestamped datasets are obtained to account for the dynamics of the scenario, which can be exploited in statistical coverage analysis of the constellation. Our empirical evaluations show that this approach is superior in accuracy and computation effort compared with the traditional net-point techniques. While net-point approaches are at the core of the state-of-The-Art commercial software, they are approximate. We show that, for finer grid granularity, the net-point schemes converge to our polygon-based results. Fil: Henn, Santiago Martín. Universidad Nacional de Córdoba; Argentina Fil: Fraire, Juan Andres. Universidad Nacional de Córdoba; Argentina. Universite Lyon 2; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Hermanns, Holger. Universitat Saarland; Alemania |
description |
Satellite coverage analysis is a fundamental performance assessment element in remote sensing and communications´ services projects. Coverage is a key parameter in the constellation operation and design for missions relying on several satellites. Since coverage areas over the surface of the Earth change with time, intersecting and drifting apart, the dynamics of every satellite influence the constellation´s behavior as a whole. For this reason, every configuration change, be it in the number of satellites or their relative positions, heavily impacts the cost/performance of the mission. This article presents a constellation-To-ground coverage analysis model that enables the rapid evaluation of areas on the surface of the Earth. The method leverages geodetic projections and an oblate-Earth model and uses dynamic transformation and antitransformation techniques combined with polygon Boolean operations. Timestamped datasets are obtained to account for the dynamics of the scenario, which can be exploited in statistical coverage analysis of the constellation. Our empirical evaluations show that this approach is superior in accuracy and computation effort compared with the traditional net-point techniques. While net-point approaches are at the core of the state-of-The-Art commercial software, they are approximate. We show that, for finer grid granularity, the net-point schemes converge to our polygon-based results. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/222755 Henn, Santiago Martín; Fraire, Juan Andres; Hermanns, Holger; Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing; Institute of Electrical and Electronics Engineers; IEEE Transactions on Aerospace and Electronic Systems; 59; 5; 10-2023; 7166-7182 0018-9251 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/222755 |
identifier_str_mv |
Henn, Santiago Martín; Fraire, Juan Andres; Hermanns, Holger; Polygon-Based Algorithms for N-Satellite Constellations Coverage Computing; Institute of Electrical and Electronics Engineers; IEEE Transactions on Aerospace and Electronic Systems; 59; 5; 10-2023; 7166-7182 0018-9251 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/TAES.2023.3289479 info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10163895 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269795163045888 |
score |
13.13397 |