On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space
- Autores
- Falomir, Horacio Alberto; González Pisani, Pablo Andrés; Vega, Federico Gaspar; Cárcamo, D.; Méndez, F.; Loewe, M.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras sl (2, ℝ) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential.
Instituto de Física La Plata - Materia
-
Matemática
Física
Noncommutative phase space
Quantum mechanics
Spectrum of rotationally invariant hamiltonians - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/99534
Ver los metadatos del registro completo
id |
SEDICI_c08e6923b219e23d37ef2cb662b37eb8 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/99534 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase spaceFalomir, Horacio AlbertoGonzález Pisani, Pablo AndrésVega, Federico GasparCárcamo, D.Méndez, F.Loewe, M.MatemáticaFísicaNoncommutative phase spaceQuantum mechanicsSpectrum of rotationally invariant hamiltoniansWe study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras sl (2, ℝ) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential.Instituto de Física La Plata2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf55202-55248http://sedici.unlp.edu.ar/handle/10915/99534enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/54415info:eu-repo/semantics/altIdentifier/issn/1751-8113info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/49/5/055202info:eu-repo/semantics/altIdentifier/hdl/11336/54415info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:12:05Zoai:sedici.unlp.edu.ar:10915/99534Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:12:05.558SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space |
title |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space |
spellingShingle |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space Falomir, Horacio Alberto Matemática Física Noncommutative phase space Quantum mechanics Spectrum of rotationally invariant hamiltonians |
title_short |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space |
title_full |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space |
title_fullStr |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space |
title_full_unstemmed |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space |
title_sort |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space |
dc.creator.none.fl_str_mv |
Falomir, Horacio Alberto González Pisani, Pablo Andrés Vega, Federico Gaspar Cárcamo, D. Méndez, F. Loewe, M. |
author |
Falomir, Horacio Alberto |
author_facet |
Falomir, Horacio Alberto González Pisani, Pablo Andrés Vega, Federico Gaspar Cárcamo, D. Méndez, F. Loewe, M. |
author_role |
author |
author2 |
González Pisani, Pablo Andrés Vega, Federico Gaspar Cárcamo, D. Méndez, F. Loewe, M. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Matemática Física Noncommutative phase space Quantum mechanics Spectrum of rotationally invariant hamiltonians |
topic |
Matemática Física Noncommutative phase space Quantum mechanics Spectrum of rotationally invariant hamiltonians |
dc.description.none.fl_txt_mv |
We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras sl (2, ℝ) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential. Instituto de Física La Plata |
description |
We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras sl (2, ℝ) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/99534 |
url |
http://sedici.unlp.edu.ar/handle/10915/99534 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/54415 info:eu-repo/semantics/altIdentifier/issn/1751-8113 info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/49/5/055202 info:eu-repo/semantics/altIdentifier/hdl/11336/54415 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 55202-55248 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064178382503936 |
score |
13.22299 |