On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space
- Autores
- Falomir, Horacio Alberto; González Pisani, Pablo Andrés; Vega, Federico Gaspar; Cárcamo, D.; Méndez, F.; Loewe, M.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras sl (2, ?) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential.
Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Vega, Federico Gaspar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Cárcamo, D.. Universidad de Santiago de Chile; Chile
Fil: Méndez, F.. Universidad de Santiago de Chile; Chile
Fil: Loewe, M.. Pontificia Universidad Católica de Chile; Chile - Materia
-
NONCOMMUTATIVE PHASE SPACE
QUANTUM MECHANICS
SPECTRUM OF ROTATIONALLY INVARIANT HAMILTONIANS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/54415
Ver los metadatos del registro completo
id |
CONICETDig_6314991e1d1155ece630b059a88de878 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/54415 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase spaceFalomir, Horacio AlbertoGonzález Pisani, Pablo AndrésVega, Federico GasparCárcamo, D.Méndez, F.Loewe, M.NONCOMMUTATIVE PHASE SPACEQUANTUM MECHANICSSPECTRUM OF ROTATIONALLY INVARIANT HAMILTONIANShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras sl (2, ?) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential.Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Vega, Federico Gaspar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Cárcamo, D.. Universidad de Santiago de Chile; ChileFil: Méndez, F.. Universidad de Santiago de Chile; ChileFil: Loewe, M.. Pontificia Universidad Católica de Chile; ChileIOP Publishing2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54415Falomir, Horacio Alberto; González Pisani, Pablo Andrés; Vega, Federico Gaspar; Cárcamo, D.; Méndez, F.; et al.; On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 49; 1; 1-2016; 55202-552481751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/49/5/055202info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:27:27Zoai:ri.conicet.gov.ar:11336/54415instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:27:27.803CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space |
title |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space |
spellingShingle |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space Falomir, Horacio Alberto NONCOMMUTATIVE PHASE SPACE QUANTUM MECHANICS SPECTRUM OF ROTATIONALLY INVARIANT HAMILTONIANS |
title_short |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space |
title_full |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space |
title_fullStr |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space |
title_full_unstemmed |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space |
title_sort |
On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space |
dc.creator.none.fl_str_mv |
Falomir, Horacio Alberto González Pisani, Pablo Andrés Vega, Federico Gaspar Cárcamo, D. Méndez, F. Loewe, M. |
author |
Falomir, Horacio Alberto |
author_facet |
Falomir, Horacio Alberto González Pisani, Pablo Andrés Vega, Federico Gaspar Cárcamo, D. Méndez, F. Loewe, M. |
author_role |
author |
author2 |
González Pisani, Pablo Andrés Vega, Federico Gaspar Cárcamo, D. Méndez, F. Loewe, M. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
NONCOMMUTATIVE PHASE SPACE QUANTUM MECHANICS SPECTRUM OF ROTATIONALLY INVARIANT HAMILTONIANS |
topic |
NONCOMMUTATIVE PHASE SPACE QUANTUM MECHANICS SPECTRUM OF ROTATIONALLY INVARIANT HAMILTONIANS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras sl (2, ?) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential. Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Vega, Federico Gaspar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Cárcamo, D.. Universidad de Santiago de Chile; Chile Fil: Méndez, F.. Universidad de Santiago de Chile; Chile Fil: Loewe, M.. Pontificia Universidad Católica de Chile; Chile |
description |
We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras sl (2, ?) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/54415 Falomir, Horacio Alberto; González Pisani, Pablo Andrés; Vega, Federico Gaspar; Cárcamo, D.; Méndez, F.; et al.; On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 49; 1; 1-2016; 55202-55248 1751-8113 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/54415 |
identifier_str_mv |
Falomir, Horacio Alberto; González Pisani, Pablo Andrés; Vega, Federico Gaspar; Cárcamo, D.; Méndez, F.; et al.; On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 49; 1; 1-2016; 55202-55248 1751-8113 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/49/5/055202 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082730029219840 |
score |
13.22299 |