Oscillators in a (2+1)-dimensional noncommutative space
- Autores
- Vega, Federico Gaspar
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the Harmonic and Dirac Oscillator problem extended to a three-dimensional noncommutative space where the noncommutativity is induced by the shift of the dynamical variables with generators of SL(2,ℝ)SL(2,R) in a unitary irreducible representation considered in Falomir et al. [Phys. Rev. D 86, 105035 (2012)]. This redefinition is interpreted in the framework of the Levi's decomposition of the deformed algebra satisfied by the noncommutative variables. The Hilbert space gets the structure of a direct product with the representation space as a factor, where there exist operators which realize the algebra of Lorentz transformations. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters, finding no constraints between coordinates and momenta noncommutativity parameters. Since the representation space of the unitary irreducible representations SL(2,ℝ)SL(2,R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension.
Instituto de Física La Plata - Materia
-
Física
Noncommutative space
Oscillator
Levi decomposition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/102109
Ver los metadatos del registro completo
id |
SEDICI_45736f34c1a3e637984057dadadf3c09 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/102109 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Oscillators in a (2+1)-dimensional noncommutative spaceVega, Federico GasparFísicaNoncommutative spaceOscillatorLevi decompositionWe study the Harmonic and Dirac Oscillator problem extended to a three-dimensional noncommutative space where the noncommutativity is induced by the shift of the dynamical variables with generators of SL(2,ℝ)SL(2,R) in a unitary irreducible representation considered in Falomir et al. [Phys. Rev. D 86, 105035 (2012)]. This redefinition is interpreted in the framework of the Levi's decomposition of the deformed algebra satisfied by the noncommutative variables. The Hilbert space gets the structure of a direct product with the representation space as a factor, where there exist operators which realize the algebra of Lorentz transformations. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters, finding no constraints between coordinates and momenta noncommutativity parameters. Since the representation space of the unitary irreducible representations SL(2,ℝ)SL(2,R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension.Instituto de Física La Plata2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1-7http://sedici.unlp.edu.ar/handle/10915/102109enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/23743info:eu-repo/semantics/altIdentifier/issn/0022-2488info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4866914info:eu-repo/semantics/altIdentifier/hdl/11336/23743info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:11:54Zoai:sedici.unlp.edu.ar:10915/102109Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:11:54.94SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Oscillators in a (2+1)-dimensional noncommutative space |
title |
Oscillators in a (2+1)-dimensional noncommutative space |
spellingShingle |
Oscillators in a (2+1)-dimensional noncommutative space Vega, Federico Gaspar Física Noncommutative space Oscillator Levi decomposition |
title_short |
Oscillators in a (2+1)-dimensional noncommutative space |
title_full |
Oscillators in a (2+1)-dimensional noncommutative space |
title_fullStr |
Oscillators in a (2+1)-dimensional noncommutative space |
title_full_unstemmed |
Oscillators in a (2+1)-dimensional noncommutative space |
title_sort |
Oscillators in a (2+1)-dimensional noncommutative space |
dc.creator.none.fl_str_mv |
Vega, Federico Gaspar |
author |
Vega, Federico Gaspar |
author_facet |
Vega, Federico Gaspar |
author_role |
author |
dc.subject.none.fl_str_mv |
Física Noncommutative space Oscillator Levi decomposition |
topic |
Física Noncommutative space Oscillator Levi decomposition |
dc.description.none.fl_txt_mv |
We study the Harmonic and Dirac Oscillator problem extended to a three-dimensional noncommutative space where the noncommutativity is induced by the shift of the dynamical variables with generators of SL(2,ℝ)SL(2,R) in a unitary irreducible representation considered in Falomir et al. [Phys. Rev. D 86, 105035 (2012)]. This redefinition is interpreted in the framework of the Levi's decomposition of the deformed algebra satisfied by the noncommutative variables. The Hilbert space gets the structure of a direct product with the representation space as a factor, where there exist operators which realize the algebra of Lorentz transformations. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters, finding no constraints between coordinates and momenta noncommutativity parameters. Since the representation space of the unitary irreducible representations SL(2,ℝ)SL(2,R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension. Instituto de Física La Plata |
description |
We study the Harmonic and Dirac Oscillator problem extended to a three-dimensional noncommutative space where the noncommutativity is induced by the shift of the dynamical variables with generators of SL(2,ℝ)SL(2,R) in a unitary irreducible representation considered in Falomir et al. [Phys. Rev. D 86, 105035 (2012)]. This redefinition is interpreted in the framework of the Levi's decomposition of the deformed algebra satisfied by the noncommutative variables. The Hilbert space gets the structure of a direct product with the representation space as a factor, where there exist operators which realize the algebra of Lorentz transformations. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters, finding no constraints between coordinates and momenta noncommutativity parameters. Since the representation space of the unitary irreducible representations SL(2,ℝ)SL(2,R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/102109 |
url |
http://sedici.unlp.edu.ar/handle/10915/102109 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/23743 info:eu-repo/semantics/altIdentifier/issn/0022-2488 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4866914 info:eu-repo/semantics/altIdentifier/hdl/11336/23743 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1-7 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064176093462528 |
score |
13.22299 |