A new method to compute second derivatives

Autores
Scolnik, Hugo Daniel; Gambini, María Juliana
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article we consider the problem of computing approximations to the second derivatives of functions of n variables using finite differences. We show how to derive different formulas and how to comput the errors of those approximations as functions of the increment h, both for first and second derivatives. Based upon those results we describe the methods of Gill and Murray and the one of gradient difference. On the other hand we introduce a new algorithm which use conjugate directions methods for minimizing functions without derivatives and the corresponding numerical comparisons with the other two methods. Finally, numerical experiences are given and the corresponding conclusions are discussed.
Facultad de Informática
Materia
Ciencias Informáticas
Algorithms
finite difference
numerical approximation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/9428

id SEDICI_be96e5220f80f3359bce279472498ff2
oai_identifier_str oai:sedici.unlp.edu.ar:10915/9428
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A new method to compute second derivativesScolnik, Hugo DanielGambini, María JulianaCiencias InformáticasAlgorithmsfinite differencenumerical approximationIn this article we consider the problem of computing approximations to the second derivatives of functions of n variables using finite differences. We show how to derive different formulas and how to comput the errors of those approximations as functions of the increment h, both for first and second derivatives. Based upon those results we describe the methods of Gill and Murray and the one of gradient difference. On the other hand we introduce a new algorithm which use conjugate directions methods for minimizing functions without derivatives and the corresponding numerical comparisons with the other two methods. Finally, numerical experiences are given and the corresponding conclusions are discussed.Facultad de Informática2001info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/9428enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/ipaper3.pdfinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:23:30Zoai:sedici.unlp.edu.ar:10915/9428Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:23:30.78SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A new method to compute second derivatives
title A new method to compute second derivatives
spellingShingle A new method to compute second derivatives
Scolnik, Hugo Daniel
Ciencias Informáticas
Algorithms
finite difference
numerical approximation
title_short A new method to compute second derivatives
title_full A new method to compute second derivatives
title_fullStr A new method to compute second derivatives
title_full_unstemmed A new method to compute second derivatives
title_sort A new method to compute second derivatives
dc.creator.none.fl_str_mv Scolnik, Hugo Daniel
Gambini, María Juliana
author Scolnik, Hugo Daniel
author_facet Scolnik, Hugo Daniel
Gambini, María Juliana
author_role author
author2 Gambini, María Juliana
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Algorithms
finite difference
numerical approximation
topic Ciencias Informáticas
Algorithms
finite difference
numerical approximation
dc.description.none.fl_txt_mv In this article we consider the problem of computing approximations to the second derivatives of functions of n variables using finite differences. We show how to derive different formulas and how to comput the errors of those approximations as functions of the increment h, both for first and second derivatives. Based upon those results we describe the methods of Gill and Murray and the one of gradient difference. On the other hand we introduce a new algorithm which use conjugate directions methods for minimizing functions without derivatives and the corresponding numerical comparisons with the other two methods. Finally, numerical experiences are given and the corresponding conclusions are discussed.
Facultad de Informática
description In this article we consider the problem of computing approximations to the second derivatives of functions of n variables using finite differences. We show how to derive different formulas and how to comput the errors of those approximations as functions of the increment h, both for first and second derivatives. Based upon those results we describe the methods of Gill and Murray and the one of gradient difference. On the other hand we introduce a new algorithm which use conjugate directions methods for minimizing functions without derivatives and the corresponding numerical comparisons with the other two methods. Finally, numerical experiences are given and the corresponding conclusions are discussed.
publishDate 2001
dc.date.none.fl_str_mv 2001
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/9428
url http://sedici.unlp.edu.ar/handle/10915/9428
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/ipaper3.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260059960115200
score 13.13397