High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences
- Autores
- Amore, Paolo; Fernández, Francisco Marcelo; Boyd, John. P.; Boris, Rösler
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We apply second order finite differences to calculate the lowest eigenvalues of the Helmholtz equation, for complicated non-tensor domains in the plane, using different grids which sample exactly the border of the domain. We show that the results obtained applying Richardson and Padé-Richardson extrapolations to a set of finite difference eigenvalues corresponding to different grids allow us to obtain extremely precise values. When possible we have assessed the precision of our extrapolations comparing them with the highly precise results obtained using the method of particular solutions. Our empirical findings suggest an asymptotic nature of the FD series. In all the cases studied, we are able to report numerical results which are more precise than those available in the literature.
Fil: Amore, Paolo. Universidad de Colima. Facultad de Ciencias; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Boyd, John. P.. University of Michigan; Estados Unidos
Fil: Boris, Rösler. Universidad de Colima. Facultad de Ciencias; México - Materia
-
FINITE DIFFERENCE
HELMHOLTZ EQUATION
RICHARDSON EXTRAPOLATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/81590
Ver los metadatos del registro completo
id |
CONICETDig_f1b5f3da5ba1929fbe87a2fa88ba369f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/81590 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differencesAmore, PaoloFernández, Francisco MarceloBoyd, John. P.Boris, RöslerFINITE DIFFERENCEHELMHOLTZ EQUATIONRICHARDSON EXTRAPOLATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We apply second order finite differences to calculate the lowest eigenvalues of the Helmholtz equation, for complicated non-tensor domains in the plane, using different grids which sample exactly the border of the domain. We show that the results obtained applying Richardson and Padé-Richardson extrapolations to a set of finite difference eigenvalues corresponding to different grids allow us to obtain extremely precise values. When possible we have assessed the precision of our extrapolations comparing them with the highly precise results obtained using the method of particular solutions. Our empirical findings suggest an asymptotic nature of the FD series. In all the cases studied, we are able to report numerical results which are more precise than those available in the literature.Fil: Amore, Paolo. Universidad de Colima. Facultad de Ciencias; MéxicoFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Boyd, John. P.. University of Michigan; Estados UnidosFil: Boris, Rösler. Universidad de Colima. Facultad de Ciencias; MéxicoAcademic Press Inc Elsevier Science2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/81590Amore, Paolo; Fernández, Francisco Marcelo; Boyd, John. P.; Boris, Rösler; High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences; Academic Press Inc Elsevier Science; Journal of Computational Physics; 312; 5-2016; 252-2710021-9991CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021999116000796info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1509.02795info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcp.2015.12.059info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:45Zoai:ri.conicet.gov.ar:11336/81590instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:46.002CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences |
title |
High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences |
spellingShingle |
High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences Amore, Paolo FINITE DIFFERENCE HELMHOLTZ EQUATION RICHARDSON EXTRAPOLATION |
title_short |
High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences |
title_full |
High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences |
title_fullStr |
High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences |
title_full_unstemmed |
High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences |
title_sort |
High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences |
dc.creator.none.fl_str_mv |
Amore, Paolo Fernández, Francisco Marcelo Boyd, John. P. Boris, Rösler |
author |
Amore, Paolo |
author_facet |
Amore, Paolo Fernández, Francisco Marcelo Boyd, John. P. Boris, Rösler |
author_role |
author |
author2 |
Fernández, Francisco Marcelo Boyd, John. P. Boris, Rösler |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
FINITE DIFFERENCE HELMHOLTZ EQUATION RICHARDSON EXTRAPOLATION |
topic |
FINITE DIFFERENCE HELMHOLTZ EQUATION RICHARDSON EXTRAPOLATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We apply second order finite differences to calculate the lowest eigenvalues of the Helmholtz equation, for complicated non-tensor domains in the plane, using different grids which sample exactly the border of the domain. We show that the results obtained applying Richardson and Padé-Richardson extrapolations to a set of finite difference eigenvalues corresponding to different grids allow us to obtain extremely precise values. When possible we have assessed the precision of our extrapolations comparing them with the highly precise results obtained using the method of particular solutions. Our empirical findings suggest an asymptotic nature of the FD series. In all the cases studied, we are able to report numerical results which are more precise than those available in the literature. Fil: Amore, Paolo. Universidad de Colima. Facultad de Ciencias; México Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Boyd, John. P.. University of Michigan; Estados Unidos Fil: Boris, Rösler. Universidad de Colima. Facultad de Ciencias; México |
description |
We apply second order finite differences to calculate the lowest eigenvalues of the Helmholtz equation, for complicated non-tensor domains in the plane, using different grids which sample exactly the border of the domain. We show that the results obtained applying Richardson and Padé-Richardson extrapolations to a set of finite difference eigenvalues corresponding to different grids allow us to obtain extremely precise values. When possible we have assessed the precision of our extrapolations comparing them with the highly precise results obtained using the method of particular solutions. Our empirical findings suggest an asymptotic nature of the FD series. In all the cases studied, we are able to report numerical results which are more precise than those available in the literature. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/81590 Amore, Paolo; Fernández, Francisco Marcelo; Boyd, John. P.; Boris, Rösler; High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences; Academic Press Inc Elsevier Science; Journal of Computational Physics; 312; 5-2016; 252-271 0021-9991 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/81590 |
identifier_str_mv |
Amore, Paolo; Fernández, Francisco Marcelo; Boyd, John. P.; Boris, Rösler; High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences; Academic Press Inc Elsevier Science; Journal of Computational Physics; 312; 5-2016; 252-271 0021-9991 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021999116000796 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1509.02795 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcp.2015.12.059 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614233083346944 |
score |
13.070432 |