Lipid packing determines protein-membrane interactions: Challenges for apolipoprotein A-I and high density lipoproteins

Autores
Sánchez, Susana A.; Tricerri, María Alejandra; Ossato, Giulia; Gratton, Enrico
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Protein and protein-lipid interactions, with and within specific areas in the cell membrane, are critical in order to modulate the cell signaling events required to maintain cell functions and viability. Biological bilayers are complex, dynamic platforms, and thus in vivo observations usually need to be preceded by studies on model systems that simplify and discriminate the different factors involved in lipid-protein interactions. Fluorescence microscopy studies using giant unilamellar vesicles (GUVs) as membrane model systems provide a unique methodology to quantify protein binding, interaction, and lipid solubilization in artificial bilayers. The large size of lipid domains obtainable on GUVs, together with fluorescence microscopy techniques, provides the possibility to localize and quantify molecular interactions. Fluorescence Correlation Spectroscopy (FCS) can be performed using the GUV model to extract information on mobility and concentration. Two-photon Laurdan Generalized Polarization (GP) reports on local changes in membrane water content (related to membrane fluidity) due to protein binding or lipid removal from a given lipid domain. In this review, we summarize the experimental microscopy methods used to study the interaction of human apolipoprotein A-I (apoA-I) in lipid-free and lipid-bound conformations with bilayers and natural membranes. Results described here help us to understand cholesterol homeostasis and offer a methodological design suited to different biological systems.
Instituto de Investigaciones Bioquímicas de La Plata
Facultad de Ciencias Médicas
Materia
Ciencias Médicas
ApoA-I
Fluorescence microscopy
GUV
Laurdan GP
RHDL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/82444

id SEDICI_ba47c39cc270d767aaadecf6233829a9
oai_identifier_str oai:sedici.unlp.edu.ar:10915/82444
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Lipid packing determines protein-membrane interactions: Challenges for apolipoprotein A-I and high density lipoproteinsSánchez, Susana A.Tricerri, María AlejandraOssato, GiuliaGratton, EnricoCiencias MédicasApoA-IFluorescence microscopyGUVLaurdan GPRHDLProtein and protein-lipid interactions, with and within specific areas in the cell membrane, are critical in order to modulate the cell signaling events required to maintain cell functions and viability. Biological bilayers are complex, dynamic platforms, and thus in vivo observations usually need to be preceded by studies on model systems that simplify and discriminate the different factors involved in lipid-protein interactions. Fluorescence microscopy studies using giant unilamellar vesicles (GUVs) as membrane model systems provide a unique methodology to quantify protein binding, interaction, and lipid solubilization in artificial bilayers. The large size of lipid domains obtainable on GUVs, together with fluorescence microscopy techniques, provides the possibility to localize and quantify molecular interactions. Fluorescence Correlation Spectroscopy (FCS) can be performed using the GUV model to extract information on mobility and concentration. Two-photon Laurdan Generalized Polarization (GP) reports on local changes in membrane water content (related to membrane fluidity) due to protein binding or lipid removal from a given lipid domain. In this review, we summarize the experimental microscopy methods used to study the interaction of human apolipoprotein A-I (apoA-I) in lipid-free and lipid-bound conformations with bilayers and natural membranes. Results described here help us to understand cholesterol homeostasis and offer a methodological design suited to different biological systems.Instituto de Investigaciones Bioquímicas de La PlataFacultad de Ciencias Médicas2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1399-1408http://sedici.unlp.edu.ar/handle/10915/82444enginfo:eu-repo/semantics/altIdentifier/issn/00052736info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bbamem.2010.03.019info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:47:46Zoai:sedici.unlp.edu.ar:10915/82444Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:47:47.18SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Lipid packing determines protein-membrane interactions: Challenges for apolipoprotein A-I and high density lipoproteins
title Lipid packing determines protein-membrane interactions: Challenges for apolipoprotein A-I and high density lipoproteins
spellingShingle Lipid packing determines protein-membrane interactions: Challenges for apolipoprotein A-I and high density lipoproteins
Sánchez, Susana A.
Ciencias Médicas
ApoA-I
Fluorescence microscopy
GUV
Laurdan GP
RHDL
title_short Lipid packing determines protein-membrane interactions: Challenges for apolipoprotein A-I and high density lipoproteins
title_full Lipid packing determines protein-membrane interactions: Challenges for apolipoprotein A-I and high density lipoproteins
title_fullStr Lipid packing determines protein-membrane interactions: Challenges for apolipoprotein A-I and high density lipoproteins
title_full_unstemmed Lipid packing determines protein-membrane interactions: Challenges for apolipoprotein A-I and high density lipoproteins
title_sort Lipid packing determines protein-membrane interactions: Challenges for apolipoprotein A-I and high density lipoproteins
dc.creator.none.fl_str_mv Sánchez, Susana A.
Tricerri, María Alejandra
Ossato, Giulia
Gratton, Enrico
author Sánchez, Susana A.
author_facet Sánchez, Susana A.
Tricerri, María Alejandra
Ossato, Giulia
Gratton, Enrico
author_role author
author2 Tricerri, María Alejandra
Ossato, Giulia
Gratton, Enrico
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Médicas
ApoA-I
Fluorescence microscopy
GUV
Laurdan GP
RHDL
topic Ciencias Médicas
ApoA-I
Fluorescence microscopy
GUV
Laurdan GP
RHDL
dc.description.none.fl_txt_mv Protein and protein-lipid interactions, with and within specific areas in the cell membrane, are critical in order to modulate the cell signaling events required to maintain cell functions and viability. Biological bilayers are complex, dynamic platforms, and thus in vivo observations usually need to be preceded by studies on model systems that simplify and discriminate the different factors involved in lipid-protein interactions. Fluorescence microscopy studies using giant unilamellar vesicles (GUVs) as membrane model systems provide a unique methodology to quantify protein binding, interaction, and lipid solubilization in artificial bilayers. The large size of lipid domains obtainable on GUVs, together with fluorescence microscopy techniques, provides the possibility to localize and quantify molecular interactions. Fluorescence Correlation Spectroscopy (FCS) can be performed using the GUV model to extract information on mobility and concentration. Two-photon Laurdan Generalized Polarization (GP) reports on local changes in membrane water content (related to membrane fluidity) due to protein binding or lipid removal from a given lipid domain. In this review, we summarize the experimental microscopy methods used to study the interaction of human apolipoprotein A-I (apoA-I) in lipid-free and lipid-bound conformations with bilayers and natural membranes. Results described here help us to understand cholesterol homeostasis and offer a methodological design suited to different biological systems.
Instituto de Investigaciones Bioquímicas de La Plata
Facultad de Ciencias Médicas
description Protein and protein-lipid interactions, with and within specific areas in the cell membrane, are critical in order to modulate the cell signaling events required to maintain cell functions and viability. Biological bilayers are complex, dynamic platforms, and thus in vivo observations usually need to be preceded by studies on model systems that simplify and discriminate the different factors involved in lipid-protein interactions. Fluorescence microscopy studies using giant unilamellar vesicles (GUVs) as membrane model systems provide a unique methodology to quantify protein binding, interaction, and lipid solubilization in artificial bilayers. The large size of lipid domains obtainable on GUVs, together with fluorescence microscopy techniques, provides the possibility to localize and quantify molecular interactions. Fluorescence Correlation Spectroscopy (FCS) can be performed using the GUV model to extract information on mobility and concentration. Two-photon Laurdan Generalized Polarization (GP) reports on local changes in membrane water content (related to membrane fluidity) due to protein binding or lipid removal from a given lipid domain. In this review, we summarize the experimental microscopy methods used to study the interaction of human apolipoprotein A-I (apoA-I) in lipid-free and lipid-bound conformations with bilayers and natural membranes. Results described here help us to understand cholesterol homeostasis and offer a methodological design suited to different biological systems.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/82444
url http://sedici.unlp.edu.ar/handle/10915/82444
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/00052736
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bbamem.2010.03.019
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1399-1408
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260350947295232
score 13.13397