High-order interpolation between adjacent cartesian finite difference grids of different size

Autores
Figueroa, Alejandro; Löhner, Rainald
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Nested cartesian grid systems by design require interpolation of solution fields from coarser to finer grid systems. While several choices are available, preserving accuracy, stability and efficiency at the same time require careful design of the interpolation schemes. Given this context, a series of interpolation algorithms for nested cartesian finite difference grids of different size were developed and tested. These algorithms are based on post-processing, on each local grid, the raw (bi/trilinear) information passed to the halo points from coarser grids. In this way modularity is maximized while preserving locality. The results obtained indicate that the schemes improve markedly the convergence rates and the overall accuracy of finite difference codes with varying grid sizes.
Publicado en: Mecánica Computacional vol. XXXV, no. 15
Facultad de Ingeniería
Materia
Ingeniería
Finite Difference Solvers
Interpolation
2:1 Transition
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/94994

id SEDICI_b8f4cff96dcd81c625e1580e485566c0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/94994
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling High-order interpolation between adjacent cartesian finite difference grids of different sizeFigueroa, AlejandroLöhner, RainaldIngenieríaFinite Difference SolversInterpolation2:1 TransitionNested cartesian grid systems by design require interpolation of solution fields from coarser to finer grid systems. While several choices are available, preserving accuracy, stability and efficiency at the same time require careful design of the interpolation schemes. Given this context, a series of interpolation algorithms for nested cartesian finite difference grids of different size were developed and tested. These algorithms are based on post-processing, on each local grid, the raw (bi/trilinear) information passed to the halo points from coarser grids. In this way modularity is maximized while preserving locality. The results obtained indicate that the schemes improve markedly the convergence rates and the overall accuracy of finite difference codes with varying grid sizes.Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 15Facultad de Ingeniería2017-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf855-871http://sedici.unlp.edu.ar/handle/10915/94994enginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5304info:eu-repo/semantics/altIdentifier/issn/2591-3522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-12-23T11:22:01Zoai:sedici.unlp.edu.ar:10915/94994Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-12-23 11:22:02.039SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv High-order interpolation between adjacent cartesian finite difference grids of different size
title High-order interpolation between adjacent cartesian finite difference grids of different size
spellingShingle High-order interpolation between adjacent cartesian finite difference grids of different size
Figueroa, Alejandro
Ingeniería
Finite Difference Solvers
Interpolation
2:1 Transition
title_short High-order interpolation between adjacent cartesian finite difference grids of different size
title_full High-order interpolation between adjacent cartesian finite difference grids of different size
title_fullStr High-order interpolation between adjacent cartesian finite difference grids of different size
title_full_unstemmed High-order interpolation between adjacent cartesian finite difference grids of different size
title_sort High-order interpolation between adjacent cartesian finite difference grids of different size
dc.creator.none.fl_str_mv Figueroa, Alejandro
Löhner, Rainald
author Figueroa, Alejandro
author_facet Figueroa, Alejandro
Löhner, Rainald
author_role author
author2 Löhner, Rainald
author2_role author
dc.subject.none.fl_str_mv Ingeniería
Finite Difference Solvers
Interpolation
2:1 Transition
topic Ingeniería
Finite Difference Solvers
Interpolation
2:1 Transition
dc.description.none.fl_txt_mv Nested cartesian grid systems by design require interpolation of solution fields from coarser to finer grid systems. While several choices are available, preserving accuracy, stability and efficiency at the same time require careful design of the interpolation schemes. Given this context, a series of interpolation algorithms for nested cartesian finite difference grids of different size were developed and tested. These algorithms are based on post-processing, on each local grid, the raw (bi/trilinear) information passed to the halo points from coarser grids. In this way modularity is maximized while preserving locality. The results obtained indicate that the schemes improve markedly the convergence rates and the overall accuracy of finite difference codes with varying grid sizes.
Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 15
Facultad de Ingeniería
description Nested cartesian grid systems by design require interpolation of solution fields from coarser to finer grid systems. While several choices are available, preserving accuracy, stability and efficiency at the same time require careful design of the interpolation schemes. Given this context, a series of interpolation algorithms for nested cartesian finite difference grids of different size were developed and tested. These algorithms are based on post-processing, on each local grid, the raw (bi/trilinear) information passed to the halo points from coarser grids. In this way modularity is maximized while preserving locality. The results obtained indicate that the schemes improve markedly the convergence rates and the overall accuracy of finite difference codes with varying grid sizes.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/94994
url http://sedici.unlp.edu.ar/handle/10915/94994
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5304
info:eu-repo/semantics/altIdentifier/issn/2591-3522
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
855-871
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1852334249262186496
score 12.952241