Initial Sensor Network Design with a Multi-Objetive Genetic Algorithm
- Autores
- Carballido, Jessica Andrea; Ponzoni, Ignacio; Brignole, Nélida B.
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- A Multi-Objective Genetic Algorithm (MOGA) application, which is based on the aggregating approach, is proposed in this article. Its aim is to find a consistent instrument configuration for industrial process plants that will constitute a convenient initial set of input data for structural Observability Analysis Algorithms (OAs). The better this configuration is, the faster the OAs will converge to a satisfactory solution. Algorithmic effectiveness was evaluated through the analysis of small academic case studies. The results obtained through our algorithm show excellent performance. Therefore, it can be stated that the prototype presented in this work is good enough to serve as a sound basis for the development of the definitive MOGA module, whose implementation will support large-size industrial plant models.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Multi-Objective Genetic Algorithm
aggregating approach
industrial process plants - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/184869
Ver los metadatos del registro completo
id |
SEDICI_b8d60004ba98d06d465b7eb55e9f6429 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/184869 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Initial Sensor Network Design with a Multi-Objetive Genetic AlgorithmCarballido, Jessica AndreaPonzoni, IgnacioBrignole, Nélida B.Ciencias InformáticasMulti-Objective Genetic Algorithmaggregating approachindustrial process plantsA Multi-Objective Genetic Algorithm (MOGA) application, which is based on the aggregating approach, is proposed in this article. Its aim is to find a consistent instrument configuration for industrial process plants that will constitute a convenient initial set of input data for structural Observability Analysis Algorithms (OAs). The better this configuration is, the faster the OAs will converge to a satisfactory solution. Algorithmic effectiveness was evaluated through the analysis of small academic case studies. The results obtained through our algorithm show excellent performance. Therefore, it can be stated that the prototype presented in this work is good enough to serve as a sound basis for the development of the definitive MOGA module, whose implementation will support large-size industrial plant models.Sociedad Argentina de Informática e Investigación Operativa2003-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/184869enginfo:eu-repo/semantics/altIdentifier/issn/1666-1079info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:50:37Zoai:sedici.unlp.edu.ar:10915/184869Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:50:37.445SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Initial Sensor Network Design with a Multi-Objetive Genetic Algorithm |
title |
Initial Sensor Network Design with a Multi-Objetive Genetic Algorithm |
spellingShingle |
Initial Sensor Network Design with a Multi-Objetive Genetic Algorithm Carballido, Jessica Andrea Ciencias Informáticas Multi-Objective Genetic Algorithm aggregating approach industrial process plants |
title_short |
Initial Sensor Network Design with a Multi-Objetive Genetic Algorithm |
title_full |
Initial Sensor Network Design with a Multi-Objetive Genetic Algorithm |
title_fullStr |
Initial Sensor Network Design with a Multi-Objetive Genetic Algorithm |
title_full_unstemmed |
Initial Sensor Network Design with a Multi-Objetive Genetic Algorithm |
title_sort |
Initial Sensor Network Design with a Multi-Objetive Genetic Algorithm |
dc.creator.none.fl_str_mv |
Carballido, Jessica Andrea Ponzoni, Ignacio Brignole, Nélida B. |
author |
Carballido, Jessica Andrea |
author_facet |
Carballido, Jessica Andrea Ponzoni, Ignacio Brignole, Nélida B. |
author_role |
author |
author2 |
Ponzoni, Ignacio Brignole, Nélida B. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Multi-Objective Genetic Algorithm aggregating approach industrial process plants |
topic |
Ciencias Informáticas Multi-Objective Genetic Algorithm aggregating approach industrial process plants |
dc.description.none.fl_txt_mv |
A Multi-Objective Genetic Algorithm (MOGA) application, which is based on the aggregating approach, is proposed in this article. Its aim is to find a consistent instrument configuration for industrial process plants that will constitute a convenient initial set of input data for structural Observability Analysis Algorithms (OAs). The better this configuration is, the faster the OAs will converge to a satisfactory solution. Algorithmic effectiveness was evaluated through the analysis of small academic case studies. The results obtained through our algorithm show excellent performance. Therefore, it can be stated that the prototype presented in this work is good enough to serve as a sound basis for the development of the definitive MOGA module, whose implementation will support large-size industrial plant models. Sociedad Argentina de Informática e Investigación Operativa |
description |
A Multi-Objective Genetic Algorithm (MOGA) application, which is based on the aggregating approach, is proposed in this article. Its aim is to find a consistent instrument configuration for industrial process plants that will constitute a convenient initial set of input data for structural Observability Analysis Algorithms (OAs). The better this configuration is, the faster the OAs will converge to a satisfactory solution. Algorithmic effectiveness was evaluated through the analysis of small academic case studies. The results obtained through our algorithm show excellent performance. Therefore, it can be stated that the prototype presented in this work is good enough to serve as a sound basis for the development of the definitive MOGA module, whose implementation will support large-size industrial plant models. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/184869 |
url |
http://sedici.unlp.edu.ar/handle/10915/184869 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1666-1079 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616364671631360 |
score |
13.070432 |