CGD-GA: A graph-based genetic algorithm for sensor network design
- Autores
- Carballido, Jessica Andrea; Ponzoni, Ignacio; Brignole, Nélida Beatriz
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The foundations and implementation of a genetic algorithm (GA) for instrumentation purposes are presented in this paper. The GA constitutes an initialization module of a decision support system for sensor network design. The method development entailed the definition of the individual's representation as well as the design of a graph-based fitness function, along with the formulation of several other ad hoc implemented features. The performance and effectiveness of the GA were assessed by initializing the instrumentation design of an ammonia synthesis plant. The initialization provided by the GA succeeded in accelerating the sensor network design procedures. It also accomplished a great improvement in the overall quality of the resulting instrument configuration. Therefore, the GA constitutes a valuable tool for the treatment of real industrial problems.
Fil: Carballido, Jessica Andrea. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Brignole, Nélida Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina - Materia
-
Combinatorial Optimization Problem
Genetic Algorithm
Observability Analysis
Process System Engineering
Process-Plant Instrumentation Design - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/83561
Ver los metadatos del registro completo
id |
CONICETDig_2bd12f8fd02883cacdcf06a5b9777b09 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/83561 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
CGD-GA: A graph-based genetic algorithm for sensor network designCarballido, Jessica AndreaPonzoni, IgnacioBrignole, Nélida BeatrizCombinatorial Optimization ProblemGenetic AlgorithmObservability AnalysisProcess System EngineeringProcess-Plant Instrumentation Designhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The foundations and implementation of a genetic algorithm (GA) for instrumentation purposes are presented in this paper. The GA constitutes an initialization module of a decision support system for sensor network design. The method development entailed the definition of the individual's representation as well as the design of a graph-based fitness function, along with the formulation of several other ad hoc implemented features. The performance and effectiveness of the GA were assessed by initializing the instrumentation design of an ammonia synthesis plant. The initialization provided by the GA succeeded in accelerating the sensor network design procedures. It also accomplished a great improvement in the overall quality of the resulting instrument configuration. Therefore, the GA constitutes a valuable tool for the treatment of real industrial problems.Fil: Carballido, Jessica Andrea. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Brignole, Nélida Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaElsevier Science Inc2007-11-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/83561Carballido, Jessica Andrea; Ponzoni, Ignacio; Brignole, Nélida Beatriz; CGD-GA: A graph-based genetic algorithm for sensor network design; Elsevier Science Inc; Information Sciences; 177; 22; 2-11-2007; 5091-51020020-0255CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002002550700271Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ins.2007.05.036info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:54Zoai:ri.conicet.gov.ar:11336/83561instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:54.613CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
CGD-GA: A graph-based genetic algorithm for sensor network design |
title |
CGD-GA: A graph-based genetic algorithm for sensor network design |
spellingShingle |
CGD-GA: A graph-based genetic algorithm for sensor network design Carballido, Jessica Andrea Combinatorial Optimization Problem Genetic Algorithm Observability Analysis Process System Engineering Process-Plant Instrumentation Design |
title_short |
CGD-GA: A graph-based genetic algorithm for sensor network design |
title_full |
CGD-GA: A graph-based genetic algorithm for sensor network design |
title_fullStr |
CGD-GA: A graph-based genetic algorithm for sensor network design |
title_full_unstemmed |
CGD-GA: A graph-based genetic algorithm for sensor network design |
title_sort |
CGD-GA: A graph-based genetic algorithm for sensor network design |
dc.creator.none.fl_str_mv |
Carballido, Jessica Andrea Ponzoni, Ignacio Brignole, Nélida Beatriz |
author |
Carballido, Jessica Andrea |
author_facet |
Carballido, Jessica Andrea Ponzoni, Ignacio Brignole, Nélida Beatriz |
author_role |
author |
author2 |
Ponzoni, Ignacio Brignole, Nélida Beatriz |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Combinatorial Optimization Problem Genetic Algorithm Observability Analysis Process System Engineering Process-Plant Instrumentation Design |
topic |
Combinatorial Optimization Problem Genetic Algorithm Observability Analysis Process System Engineering Process-Plant Instrumentation Design |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The foundations and implementation of a genetic algorithm (GA) for instrumentation purposes are presented in this paper. The GA constitutes an initialization module of a decision support system for sensor network design. The method development entailed the definition of the individual's representation as well as the design of a graph-based fitness function, along with the formulation of several other ad hoc implemented features. The performance and effectiveness of the GA were assessed by initializing the instrumentation design of an ammonia synthesis plant. The initialization provided by the GA succeeded in accelerating the sensor network design procedures. It also accomplished a great improvement in the overall quality of the resulting instrument configuration. Therefore, the GA constitutes a valuable tool for the treatment of real industrial problems. Fil: Carballido, Jessica Andrea. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Computación Científica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina Fil: Brignole, Nélida Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina |
description |
The foundations and implementation of a genetic algorithm (GA) for instrumentation purposes are presented in this paper. The GA constitutes an initialization module of a decision support system for sensor network design. The method development entailed the definition of the individual's representation as well as the design of a graph-based fitness function, along with the formulation of several other ad hoc implemented features. The performance and effectiveness of the GA were assessed by initializing the instrumentation design of an ammonia synthesis plant. The initialization provided by the GA succeeded in accelerating the sensor network design procedures. It also accomplished a great improvement in the overall quality of the resulting instrument configuration. Therefore, the GA constitutes a valuable tool for the treatment of real industrial problems. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-11-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/83561 Carballido, Jessica Andrea; Ponzoni, Ignacio; Brignole, Nélida Beatriz; CGD-GA: A graph-based genetic algorithm for sensor network design; Elsevier Science Inc; Information Sciences; 177; 22; 2-11-2007; 5091-5102 0020-0255 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/83561 |
identifier_str_mv |
Carballido, Jessica Andrea; Ponzoni, Ignacio; Brignole, Nélida Beatriz; CGD-GA: A graph-based genetic algorithm for sensor network design; Elsevier Science Inc; Information Sciences; 177; 22; 2-11-2007; 5091-5102 0020-0255 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002002550700271X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ins.2007.05.036 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614081393197056 |
score |
13.069144 |