Cellular gas with active components of PSO: mutation and crossover
- Autores
- Villagra, Andrea; Leguizamón, Guillermo; Alba Torres, Enrique
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Two powerful metaheuristics being used successfully since their creation for the resolution of optimization problems are Cellular Genetic Algorithm (cGA) and Particle Swam Optimization (PSO). Over the last years, interest in hybrid metaheuristics has risen considerably in the field of optimization. Combinations of operators and metaheuristics have provided very powerful search techniques. In this work we incorporate active components of PSO into the cGA. We replace the mutation and the crossover operators by concepts inherited by PSO internal techniques. We present four hybrid algorithms and analyze their performance using a set of different problems. The results obtained are quite satisfactory in efficacy and efficiency.
Eje: Workshop Agentes y sistemas inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Intelligent agents
Heuristic methods
Optimization
Cellular GAs
Active Components of PSO
Mutation
Crossover - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23611
Ver los metadatos del registro completo
| id |
SEDICI_b8299fc04738cd7bebdede93c2fe14b1 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23611 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Cellular gas with active components of PSO: mutation and crossoverVillagra, AndreaLeguizamón, GuillermoAlba Torres, EnriqueCiencias InformáticasIntelligent agentsHeuristic methodsOptimizationCellular GAsActive Components of PSOMutationCrossoverTwo powerful metaheuristics being used successfully since their creation for the resolution of optimization problems are Cellular Genetic Algorithm (cGA) and Particle Swam Optimization (PSO). Over the last years, interest in hybrid metaheuristics has risen considerably in the field of optimization. Combinations of operators and metaheuristics have provided very powerful search techniques. In this work we incorporate active components of PSO into the cGA. We replace the mutation and the crossover operators by concepts inherited by PSO internal techniques. We present four hybrid algorithms and analyze their performance using a set of different problems. The results obtained are quite satisfactory in efficacy and efficiency.Eje: Workshop Agentes y sistemas inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2012-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23611enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-26T09:34:05Zoai:sedici.unlp.edu.ar:10915/23611Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-26 09:34:05.386SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Cellular gas with active components of PSO: mutation and crossover |
| title |
Cellular gas with active components of PSO: mutation and crossover |
| spellingShingle |
Cellular gas with active components of PSO: mutation and crossover Villagra, Andrea Ciencias Informáticas Intelligent agents Heuristic methods Optimization Cellular GAs Active Components of PSO Mutation Crossover |
| title_short |
Cellular gas with active components of PSO: mutation and crossover |
| title_full |
Cellular gas with active components of PSO: mutation and crossover |
| title_fullStr |
Cellular gas with active components of PSO: mutation and crossover |
| title_full_unstemmed |
Cellular gas with active components of PSO: mutation and crossover |
| title_sort |
Cellular gas with active components of PSO: mutation and crossover |
| dc.creator.none.fl_str_mv |
Villagra, Andrea Leguizamón, Guillermo Alba Torres, Enrique |
| author |
Villagra, Andrea |
| author_facet |
Villagra, Andrea Leguizamón, Guillermo Alba Torres, Enrique |
| author_role |
author |
| author2 |
Leguizamón, Guillermo Alba Torres, Enrique |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Intelligent agents Heuristic methods Optimization Cellular GAs Active Components of PSO Mutation Crossover |
| topic |
Ciencias Informáticas Intelligent agents Heuristic methods Optimization Cellular GAs Active Components of PSO Mutation Crossover |
| dc.description.none.fl_txt_mv |
Two powerful metaheuristics being used successfully since their creation for the resolution of optimization problems are Cellular Genetic Algorithm (cGA) and Particle Swam Optimization (PSO). Over the last years, interest in hybrid metaheuristics has risen considerably in the field of optimization. Combinations of operators and metaheuristics have provided very powerful search techniques. In this work we incorporate active components of PSO into the cGA. We replace the mutation and the crossover operators by concepts inherited by PSO internal techniques. We present four hybrid algorithms and analyze their performance using a set of different problems. The results obtained are quite satisfactory in efficacy and efficiency. Eje: Workshop Agentes y sistemas inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
| description |
Two powerful metaheuristics being used successfully since their creation for the resolution of optimization problems are Cellular Genetic Algorithm (cGA) and Particle Swam Optimization (PSO). Over the last years, interest in hybrid metaheuristics has risen considerably in the field of optimization. Combinations of operators and metaheuristics have provided very powerful search techniques. In this work we incorporate active components of PSO into the cGA. We replace the mutation and the crossover operators by concepts inherited by PSO internal techniques. We present four hybrid algorithms and analyze their performance using a set of different problems. The results obtained are quite satisfactory in efficacy and efficiency. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23611 |
| url |
http://sedici.unlp.edu.ar/handle/10915/23611 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1849875726602338304 |
| score |
13.011256 |