Influence of crossover operators in evolutionary scheduling under multirecombined schemes

Autores
San Pedro, María Eugenia de; Pandolfi, Daniel; Villagra, Andrea; Lasso, Marta Graciela; Gallard, Raúl Hector
Año de publicación
2003
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In evolutionary algorithms based on genetics, the crossover operation creates individuals by interchanging genes. On the other side selection mechanisms aim to favour reproduction of better individuals imposing a direction on the search process: copies of better ones replace worst individuals. Consequently, part of the genetic material contained in these worst individuals disappears forever. This loss of diversity can lead to a premature convergence. To prevent a premature convergence to a local optimum under the same selection mechanism and multirecombined scheme then, either a larger population size or adequate crossover and mutation operators are needed. In this work we are showing the effect on genetic diversity, quality of results and required computational effort, when applying different crossover methods to a set of very hard instances of the weighted tardiness scheduling problem in single machine environments. For these experiments we are using multirecombined approaches which allow multiple crossover operations on multiple parent each time a new individual is generated. A description of each method, experiments and preliminary results are reported.
Eje: Agentes y Sistemas Inteligentes (ASI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Scheduling
Algorithms
ARTIFICIAL INTELLIGENCE
Intelligent agents
Evolutionary Scheduling
Weighted Tardiness
Crossover Operators
genetic diversity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/22729

id SEDICI_a2af424b00bb5bb9eb8eab7f536248ed
oai_identifier_str oai:sedici.unlp.edu.ar:10915/22729
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Influence of crossover operators in evolutionary scheduling under multirecombined schemesSan Pedro, María Eugenia dePandolfi, DanielVillagra, AndreaLasso, Marta GracielaGallard, Raúl HectorCiencias InformáticasSchedulingAlgorithmsARTIFICIAL INTELLIGENCEIntelligent agentsEvolutionary SchedulingWeighted TardinessCrossover Operatorsgenetic diversityIn evolutionary algorithms based on genetics, the crossover operation creates individuals by interchanging genes. On the other side selection mechanisms aim to favour reproduction of better individuals imposing a direction on the search process: copies of better ones replace worst individuals. Consequently, part of the genetic material contained in these worst individuals disappears forever. This loss of diversity can lead to a premature convergence. To prevent a premature convergence to a local optimum under the same selection mechanism and multirecombined scheme then, either a larger population size or adequate crossover and mutation operators are needed. In this work we are showing the effect on genetic diversity, quality of results and required computational effort, when applying different crossover methods to a set of very hard instances of the weighted tardiness scheduling problem in single machine environments. For these experiments we are using multirecombined approaches which allow multiple crossover operations on multiple parent each time a new individual is generated. A description of each method, experiments and preliminary results are reported.Eje: Agentes y Sistemas Inteligentes (ASI)Red de Universidades con Carreras en Informática (RedUNCI)2003-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf658-669http://sedici.unlp.edu.ar/handle/10915/22729enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:08Zoai:sedici.unlp.edu.ar:10915/22729Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:08.358SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Influence of crossover operators in evolutionary scheduling under multirecombined schemes
title Influence of crossover operators in evolutionary scheduling under multirecombined schemes
spellingShingle Influence of crossover operators in evolutionary scheduling under multirecombined schemes
San Pedro, María Eugenia de
Ciencias Informáticas
Scheduling
Algorithms
ARTIFICIAL INTELLIGENCE
Intelligent agents
Evolutionary Scheduling
Weighted Tardiness
Crossover Operators
genetic diversity
title_short Influence of crossover operators in evolutionary scheduling under multirecombined schemes
title_full Influence of crossover operators in evolutionary scheduling under multirecombined schemes
title_fullStr Influence of crossover operators in evolutionary scheduling under multirecombined schemes
title_full_unstemmed Influence of crossover operators in evolutionary scheduling under multirecombined schemes
title_sort Influence of crossover operators in evolutionary scheduling under multirecombined schemes
dc.creator.none.fl_str_mv San Pedro, María Eugenia de
Pandolfi, Daniel
Villagra, Andrea
Lasso, Marta Graciela
Gallard, Raúl Hector
author San Pedro, María Eugenia de
author_facet San Pedro, María Eugenia de
Pandolfi, Daniel
Villagra, Andrea
Lasso, Marta Graciela
Gallard, Raúl Hector
author_role author
author2 Pandolfi, Daniel
Villagra, Andrea
Lasso, Marta Graciela
Gallard, Raúl Hector
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Scheduling
Algorithms
ARTIFICIAL INTELLIGENCE
Intelligent agents
Evolutionary Scheduling
Weighted Tardiness
Crossover Operators
genetic diversity
topic Ciencias Informáticas
Scheduling
Algorithms
ARTIFICIAL INTELLIGENCE
Intelligent agents
Evolutionary Scheduling
Weighted Tardiness
Crossover Operators
genetic diversity
dc.description.none.fl_txt_mv In evolutionary algorithms based on genetics, the crossover operation creates individuals by interchanging genes. On the other side selection mechanisms aim to favour reproduction of better individuals imposing a direction on the search process: copies of better ones replace worst individuals. Consequently, part of the genetic material contained in these worst individuals disappears forever. This loss of diversity can lead to a premature convergence. To prevent a premature convergence to a local optimum under the same selection mechanism and multirecombined scheme then, either a larger population size or adequate crossover and mutation operators are needed. In this work we are showing the effect on genetic diversity, quality of results and required computational effort, when applying different crossover methods to a set of very hard instances of the weighted tardiness scheduling problem in single machine environments. For these experiments we are using multirecombined approaches which allow multiple crossover operations on multiple parent each time a new individual is generated. A description of each method, experiments and preliminary results are reported.
Eje: Agentes y Sistemas Inteligentes (ASI)
Red de Universidades con Carreras en Informática (RedUNCI)
description In evolutionary algorithms based on genetics, the crossover operation creates individuals by interchanging genes. On the other side selection mechanisms aim to favour reproduction of better individuals imposing a direction on the search process: copies of better ones replace worst individuals. Consequently, part of the genetic material contained in these worst individuals disappears forever. This loss of diversity can lead to a premature convergence. To prevent a premature convergence to a local optimum under the same selection mechanism and multirecombined scheme then, either a larger population size or adequate crossover and mutation operators are needed. In this work we are showing the effect on genetic diversity, quality of results and required computational effort, when applying different crossover methods to a set of very hard instances of the weighted tardiness scheduling problem in single machine environments. For these experiments we are using multirecombined approaches which allow multiple crossover operations on multiple parent each time a new individual is generated. A description of each method, experiments and preliminary results are reported.
publishDate 2003
dc.date.none.fl_str_mv 2003-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/22729
url http://sedici.unlp.edu.ar/handle/10915/22729
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
658-669
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615810474049536
score 13.070432