Influence of crossover operators in evolutionary scheduling under multirecombined schemes
- Autores
- San Pedro, María Eugenia de; Pandolfi, Daniel; Villagra, Andrea; Lasso, Marta Graciela; Gallard, Raúl Hector
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In evolutionary algorithms based on genetics, the crossover operation creates individuals by interchanging genes. On the other side selection mechanisms aim to favour reproduction of better individuals imposing a direction on the search process: copies of better ones replace worst individuals. Consequently, part of the genetic material contained in these worst individuals disappears forever. This loss of diversity can lead to a premature convergence. To prevent a premature convergence to a local optimum under the same selection mechanism and multirecombined scheme then, either a larger population size or adequate crossover and mutation operators are needed. In this work we are showing the effect on genetic diversity, quality of results and required computational effort, when applying different crossover methods to a set of very hard instances of the weighted tardiness scheduling problem in single machine environments. For these experiments we are using multirecombined approaches which allow multiple crossover operations on multiple parent each time a new individual is generated. A description of each method, experiments and preliminary results are reported.
Eje: Agentes y Sistemas Inteligentes (ASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Scheduling
Algorithms
ARTIFICIAL INTELLIGENCE
Intelligent agents
Evolutionary Scheduling
Weighted Tardiness
Crossover Operators
genetic diversity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22729
Ver los metadatos del registro completo
id |
SEDICI_a2af424b00bb5bb9eb8eab7f536248ed |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22729 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Influence of crossover operators in evolutionary scheduling under multirecombined schemesSan Pedro, María Eugenia dePandolfi, DanielVillagra, AndreaLasso, Marta GracielaGallard, Raúl HectorCiencias InformáticasSchedulingAlgorithmsARTIFICIAL INTELLIGENCEIntelligent agentsEvolutionary SchedulingWeighted TardinessCrossover Operatorsgenetic diversityIn evolutionary algorithms based on genetics, the crossover operation creates individuals by interchanging genes. On the other side selection mechanisms aim to favour reproduction of better individuals imposing a direction on the search process: copies of better ones replace worst individuals. Consequently, part of the genetic material contained in these worst individuals disappears forever. This loss of diversity can lead to a premature convergence. To prevent a premature convergence to a local optimum under the same selection mechanism and multirecombined scheme then, either a larger population size or adequate crossover and mutation operators are needed. In this work we are showing the effect on genetic diversity, quality of results and required computational effort, when applying different crossover methods to a set of very hard instances of the weighted tardiness scheduling problem in single machine environments. For these experiments we are using multirecombined approaches which allow multiple crossover operations on multiple parent each time a new individual is generated. A description of each method, experiments and preliminary results are reported.Eje: Agentes y Sistemas Inteligentes (ASI)Red de Universidades con Carreras en Informática (RedUNCI)2003-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf658-669http://sedici.unlp.edu.ar/handle/10915/22729enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:08Zoai:sedici.unlp.edu.ar:10915/22729Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:08.358SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Influence of crossover operators in evolutionary scheduling under multirecombined schemes |
title |
Influence of crossover operators in evolutionary scheduling under multirecombined schemes |
spellingShingle |
Influence of crossover operators in evolutionary scheduling under multirecombined schemes San Pedro, María Eugenia de Ciencias Informáticas Scheduling Algorithms ARTIFICIAL INTELLIGENCE Intelligent agents Evolutionary Scheduling Weighted Tardiness Crossover Operators genetic diversity |
title_short |
Influence of crossover operators in evolutionary scheduling under multirecombined schemes |
title_full |
Influence of crossover operators in evolutionary scheduling under multirecombined schemes |
title_fullStr |
Influence of crossover operators in evolutionary scheduling under multirecombined schemes |
title_full_unstemmed |
Influence of crossover operators in evolutionary scheduling under multirecombined schemes |
title_sort |
Influence of crossover operators in evolutionary scheduling under multirecombined schemes |
dc.creator.none.fl_str_mv |
San Pedro, María Eugenia de Pandolfi, Daniel Villagra, Andrea Lasso, Marta Graciela Gallard, Raúl Hector |
author |
San Pedro, María Eugenia de |
author_facet |
San Pedro, María Eugenia de Pandolfi, Daniel Villagra, Andrea Lasso, Marta Graciela Gallard, Raúl Hector |
author_role |
author |
author2 |
Pandolfi, Daniel Villagra, Andrea Lasso, Marta Graciela Gallard, Raúl Hector |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Scheduling Algorithms ARTIFICIAL INTELLIGENCE Intelligent agents Evolutionary Scheduling Weighted Tardiness Crossover Operators genetic diversity |
topic |
Ciencias Informáticas Scheduling Algorithms ARTIFICIAL INTELLIGENCE Intelligent agents Evolutionary Scheduling Weighted Tardiness Crossover Operators genetic diversity |
dc.description.none.fl_txt_mv |
In evolutionary algorithms based on genetics, the crossover operation creates individuals by interchanging genes. On the other side selection mechanisms aim to favour reproduction of better individuals imposing a direction on the search process: copies of better ones replace worst individuals. Consequently, part of the genetic material contained in these worst individuals disappears forever. This loss of diversity can lead to a premature convergence. To prevent a premature convergence to a local optimum under the same selection mechanism and multirecombined scheme then, either a larger population size or adequate crossover and mutation operators are needed. In this work we are showing the effect on genetic diversity, quality of results and required computational effort, when applying different crossover methods to a set of very hard instances of the weighted tardiness scheduling problem in single machine environments. For these experiments we are using multirecombined approaches which allow multiple crossover operations on multiple parent each time a new individual is generated. A description of each method, experiments and preliminary results are reported. Eje: Agentes y Sistemas Inteligentes (ASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
In evolutionary algorithms based on genetics, the crossover operation creates individuals by interchanging genes. On the other side selection mechanisms aim to favour reproduction of better individuals imposing a direction on the search process: copies of better ones replace worst individuals. Consequently, part of the genetic material contained in these worst individuals disappears forever. This loss of diversity can lead to a premature convergence. To prevent a premature convergence to a local optimum under the same selection mechanism and multirecombined scheme then, either a larger population size or adequate crossover and mutation operators are needed. In this work we are showing the effect on genetic diversity, quality of results and required computational effort, when applying different crossover methods to a set of very hard instances of the weighted tardiness scheduling problem in single machine environments. For these experiments we are using multirecombined approaches which allow multiple crossover operations on multiple parent each time a new individual is generated. A description of each method, experiments and preliminary results are reported. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22729 |
url |
http://sedici.unlp.edu.ar/handle/10915/22729 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 658-669 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615810474049536 |
score |
13.070432 |