Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease

Autores
Bondar, Constanza María; Araya, Romina Elizabeth; Guzman, Luciana; Cueto Rua, Eduardo; Chopita, Néstor Alfredo; Chirdo, Fernando Gabriel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Lymphocytic infiltration in the lamina propria (LP), which is primarily composed of CD4+ Th1 cells and plasma cells, and increased numbers of intraepithelial lymphocytes (IELs), is a characteristic finding in active celiac disease (CD). Signals for this selective cell recruitment have not been fully established. CXCR3 and its ligands, particularly CXCL10, have been suggested to be one of the most relevant pathways in the attraction of cells into inflamed tissues. In addition, CXCR3 is characteristically expressed by Th1 cells. The aim of this work was to investigate the participation of the chemokine CXCL10/CXCR3 axis in CD pathogenesis. A higher concentration of CXCL10 was found in the serum of untreated CD patients. The mRNA levels of CXCL10 and CXCL11 but not CXCL9 were significantly higher in duodenal biopsies from untreated CD patients compared with non-CD controls or treated patients. The results demonstrate that CXCL10 is abundantly produced in untreated CD and reduced in treated patients, and the expression of CXCL10 was found to be correlated with the IFNγ levels in the tissue. Plasma cells and enterocytes were identified as CXCL10-producing cells. Moreover, the CXCL10 expression in intestinal tissues was upregulated by poly I:C and IL-15. IELs, LP T lymphocytes, and plasma cells, which infiltrate the intestinal mucosa in untreated CD, express CXCR3. The CXCR3/CXCL10 signalling axis is overactivated in the small intestinal mucosa in untreated patients, and this finding explains the specific recruitment of the major cell populations that infiltrate the epithelium and the LP in CD.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Enfermedad Celíaca
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/85562

id SEDICI_b7bedea9553718faf521bb0df024de4b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/85562
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac diseaseBondar, Constanza MaríaAraya, Romina ElizabethGuzman, LucianaCueto Rua, EduardoChopita, Néstor AlfredoChirdo, Fernando GabrielCiencias ExactasEnfermedad CelíacaLymphocytic infiltration in the lamina propria (LP), which is primarily composed of CD4+ Th1 cells and plasma cells, and increased numbers of intraepithelial lymphocytes (IELs), is a characteristic finding in active celiac disease (CD). Signals for this selective cell recruitment have not been fully established. CXCR3 and its ligands, particularly CXCL10, have been suggested to be one of the most relevant pathways in the attraction of cells into inflamed tissues. In addition, CXCR3 is characteristically expressed by Th1 cells. The aim of this work was to investigate the participation of the chemokine CXCL10/CXCR3 axis in CD pathogenesis. A higher concentration of CXCL10 was found in the serum of untreated CD patients. The mRNA levels of CXCL10 and CXCL11 but not CXCL9 were significantly higher in duodenal biopsies from untreated CD patients compared with non-CD controls or treated patients. The results demonstrate that CXCL10 is abundantly produced in untreated CD and reduced in treated patients, and the expression of CXCL10 was found to be correlated with the IFNγ levels in the tissue. Plasma cells and enterocytes were identified as CXCL10-producing cells. Moreover, the CXCL10 expression in intestinal tissues was upregulated by poly I:C and IL-15. IELs, LP T lymphocytes, and plasma cells, which infiltrate the intestinal mucosa in untreated CD, express CXCR3. The CXCR3/CXCL10 signalling axis is overactivated in the small intestinal mucosa in untreated patients, and this finding explains the specific recruitment of the major cell populations that infiltrate the epithelium and the LP in CD.Facultad de Ciencias Exactas2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/85562enginfo:eu-repo/semantics/altIdentifier/issn/1932-6203info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0089068info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:08:17Zoai:sedici.unlp.edu.ar:10915/85562Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:08:17.656SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease
title Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease
spellingShingle Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease
Bondar, Constanza María
Ciencias Exactas
Enfermedad Celíaca
title_short Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease
title_full Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease
title_fullStr Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease
title_full_unstemmed Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease
title_sort Role of CXCR3/CXCL10 axis in immune cell recruitment into the small intestine in celiac disease
dc.creator.none.fl_str_mv Bondar, Constanza María
Araya, Romina Elizabeth
Guzman, Luciana
Cueto Rua, Eduardo
Chopita, Néstor Alfredo
Chirdo, Fernando Gabriel
author Bondar, Constanza María
author_facet Bondar, Constanza María
Araya, Romina Elizabeth
Guzman, Luciana
Cueto Rua, Eduardo
Chopita, Néstor Alfredo
Chirdo, Fernando Gabriel
author_role author
author2 Araya, Romina Elizabeth
Guzman, Luciana
Cueto Rua, Eduardo
Chopita, Néstor Alfredo
Chirdo, Fernando Gabriel
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Enfermedad Celíaca
topic Ciencias Exactas
Enfermedad Celíaca
dc.description.none.fl_txt_mv Lymphocytic infiltration in the lamina propria (LP), which is primarily composed of CD4+ Th1 cells and plasma cells, and increased numbers of intraepithelial lymphocytes (IELs), is a characteristic finding in active celiac disease (CD). Signals for this selective cell recruitment have not been fully established. CXCR3 and its ligands, particularly CXCL10, have been suggested to be one of the most relevant pathways in the attraction of cells into inflamed tissues. In addition, CXCR3 is characteristically expressed by Th1 cells. The aim of this work was to investigate the participation of the chemokine CXCL10/CXCR3 axis in CD pathogenesis. A higher concentration of CXCL10 was found in the serum of untreated CD patients. The mRNA levels of CXCL10 and CXCL11 but not CXCL9 were significantly higher in duodenal biopsies from untreated CD patients compared with non-CD controls or treated patients. The results demonstrate that CXCL10 is abundantly produced in untreated CD and reduced in treated patients, and the expression of CXCL10 was found to be correlated with the IFNγ levels in the tissue. Plasma cells and enterocytes were identified as CXCL10-producing cells. Moreover, the CXCL10 expression in intestinal tissues was upregulated by poly I:C and IL-15. IELs, LP T lymphocytes, and plasma cells, which infiltrate the intestinal mucosa in untreated CD, express CXCR3. The CXCR3/CXCL10 signalling axis is overactivated in the small intestinal mucosa in untreated patients, and this finding explains the specific recruitment of the major cell populations that infiltrate the epithelium and the LP in CD.
Facultad de Ciencias Exactas
description Lymphocytic infiltration in the lamina propria (LP), which is primarily composed of CD4+ Th1 cells and plasma cells, and increased numbers of intraepithelial lymphocytes (IELs), is a characteristic finding in active celiac disease (CD). Signals for this selective cell recruitment have not been fully established. CXCR3 and its ligands, particularly CXCL10, have been suggested to be one of the most relevant pathways in the attraction of cells into inflamed tissues. In addition, CXCR3 is characteristically expressed by Th1 cells. The aim of this work was to investigate the participation of the chemokine CXCL10/CXCR3 axis in CD pathogenesis. A higher concentration of CXCL10 was found in the serum of untreated CD patients. The mRNA levels of CXCL10 and CXCL11 but not CXCL9 were significantly higher in duodenal biopsies from untreated CD patients compared with non-CD controls or treated patients. The results demonstrate that CXCL10 is abundantly produced in untreated CD and reduced in treated patients, and the expression of CXCL10 was found to be correlated with the IFNγ levels in the tissue. Plasma cells and enterocytes were identified as CXCL10-producing cells. Moreover, the CXCL10 expression in intestinal tissues was upregulated by poly I:C and IL-15. IELs, LP T lymphocytes, and plasma cells, which infiltrate the intestinal mucosa in untreated CD, express CXCR3. The CXCR3/CXCL10 signalling axis is overactivated in the small intestinal mucosa in untreated patients, and this finding explains the specific recruitment of the major cell populations that infiltrate the epithelium and the LP in CD.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/85562
url http://sedici.unlp.edu.ar/handle/10915/85562
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1932-6203
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0089068
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064139414274048
score 13.22299