Complexity of XOR/XNOR boolean functions: a model using binary decision diagrams and back propagation neural networks
- Autores
- Assi, Ali; Beg, Prasad; Beg, Azam; Prasad, V. C.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper proposes a model that predicts the complexity of Boolean functions with only XOR/XNOR min-terms using back propagation neural networks (BPNNs) applied to Binary Decision Diagrams (BDDs). The BPNN model (BPNNM) is developed through the training process of experimental data already obtained for XOR/XNOR-based Boolean functions. The outcome of this model is a unique matrix for the complexity estimation over a set of BDDs derived from Boolean expressions with a given number of variables and XOR/XNOR min-terms. The comparison results of the experimental and BPNNM underline the efficiency of this approach, which is capable of providing some useful clues about the complexity of the circuit to be implemented. It also proves the computational capabilities of NNs in providing reliable classification of the complexity of Boolean functions.
Facultad de Informática - Materia
-
Ciencias Informáticas
boolean expressions
Neural nets - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9546
Ver los metadatos del registro completo
| id |
SEDICI_b79261bc8b0f7a1382ce6be483ded304 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9546 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Complexity of XOR/XNOR boolean functions: a model using binary decision diagrams and back propagation neural networksAssi, AliBeg, PrasadBeg, AzamPrasad, V. C.Ciencias Informáticasboolean expressionsNeural netsThis paper proposes a model that predicts the complexity of Boolean functions with only XOR/XNOR min-terms using back propagation neural networks (BPNNs) applied to Binary Decision Diagrams (BDDs). The BPNN model (BPNNM) is developed through the training process of experimental data already obtained for XOR/XNOR-based Boolean functions. The outcome of this model is a unique matrix for the complexity estimation over a set of BDDs derived from Boolean expressions with a given number of variables and XOR/XNOR min-terms. The comparison results of the experimental and BPNNM underline the efficiency of this approach, which is capable of providing some useful clues about the complexity of the circuit to be implemented. It also proves the computational capabilities of NNs in providing reliable classification of the complexity of Boolean functions.Facultad de Informática2007-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf141-147http://sedici.unlp.edu.ar/handle/10915/9546enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr07-3.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:32:17Zoai:sedici.unlp.edu.ar:10915/9546Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:32:17.899SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Complexity of XOR/XNOR boolean functions: a model using binary decision diagrams and back propagation neural networks |
| title |
Complexity of XOR/XNOR boolean functions: a model using binary decision diagrams and back propagation neural networks |
| spellingShingle |
Complexity of XOR/XNOR boolean functions: a model using binary decision diagrams and back propagation neural networks Assi, Ali Ciencias Informáticas boolean expressions Neural nets |
| title_short |
Complexity of XOR/XNOR boolean functions: a model using binary decision diagrams and back propagation neural networks |
| title_full |
Complexity of XOR/XNOR boolean functions: a model using binary decision diagrams and back propagation neural networks |
| title_fullStr |
Complexity of XOR/XNOR boolean functions: a model using binary decision diagrams and back propagation neural networks |
| title_full_unstemmed |
Complexity of XOR/XNOR boolean functions: a model using binary decision diagrams and back propagation neural networks |
| title_sort |
Complexity of XOR/XNOR boolean functions: a model using binary decision diagrams and back propagation neural networks |
| dc.creator.none.fl_str_mv |
Assi, Ali Beg, Prasad Beg, Azam Prasad, V. C. |
| author |
Assi, Ali |
| author_facet |
Assi, Ali Beg, Prasad Beg, Azam Prasad, V. C. |
| author_role |
author |
| author2 |
Beg, Prasad Beg, Azam Prasad, V. C. |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas boolean expressions Neural nets |
| topic |
Ciencias Informáticas boolean expressions Neural nets |
| dc.description.none.fl_txt_mv |
This paper proposes a model that predicts the complexity of Boolean functions with only XOR/XNOR min-terms using back propagation neural networks (BPNNs) applied to Binary Decision Diagrams (BDDs). The BPNN model (BPNNM) is developed through the training process of experimental data already obtained for XOR/XNOR-based Boolean functions. The outcome of this model is a unique matrix for the complexity estimation over a set of BDDs derived from Boolean expressions with a given number of variables and XOR/XNOR min-terms. The comparison results of the experimental and BPNNM underline the efficiency of this approach, which is capable of providing some useful clues about the complexity of the circuit to be implemented. It also proves the computational capabilities of NNs in providing reliable classification of the complexity of Boolean functions. Facultad de Informática |
| description |
This paper proposes a model that predicts the complexity of Boolean functions with only XOR/XNOR min-terms using back propagation neural networks (BPNNs) applied to Binary Decision Diagrams (BDDs). The BPNN model (BPNNM) is developed through the training process of experimental data already obtained for XOR/XNOR-based Boolean functions. The outcome of this model is a unique matrix for the complexity estimation over a set of BDDs derived from Boolean expressions with a given number of variables and XOR/XNOR min-terms. The comparison results of the experimental and BPNNM underline the efficiency of this approach, which is capable of providing some useful clues about the complexity of the circuit to be implemented. It also proves the computational capabilities of NNs in providing reliable classification of the complexity of Boolean functions. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9546 |
| url |
http://sedici.unlp.edu.ar/handle/10915/9546 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr07-3.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
| dc.format.none.fl_str_mv |
application/pdf 141-147 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846782742868525056 |
| score |
12.982451 |