k-TVT: a flexible and effective method for early depression detection
- Autores
- Cagnina, Leticia Cecilia; Errecalde, Marcelo Luis; Garciarena Ucelay, María José; Funez, Darío Gustavo; Villegas, María Paula
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The increasing use of social media allows the extraction of valuable information to early prevent some risks. Such is the case of the use of blogs to early detect people with signs of depression. In order to address this problem, we describe k-temporal variation of terms (k-TVT), a method which uses the variation of vocabulary along the different time steps as concept space to represent the documents. An interesting particularity of this approach is the possibility of setting a parameter (the k value) depending on the urgency (earliness) level required to detect the risky (depressed) cases. Results on the early detection of depression data set from eRisk 2017 seem to confirm the robustness of k-TVT for different urgency levels using SVM as classifier. Besides, some recent results on an extension of this collection would confirm the effectiveness of k-TVT as one of the state-of-the-art methods for early depression detection.
XVI Workshop Bases de Datos y Minería de Datos.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Early Risk Prediction
Early Depression Detection
Text Representation
Semantic Analysis Techniques
Temporal Variation of Terms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/90534
Ver los metadatos del registro completo
id |
SEDICI_b76814e1b0e19a10f167aba27d00827b |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/90534 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
k-TVT: a flexible and effective method for early depression detectionCagnina, Leticia CeciliaErrecalde, Marcelo LuisGarciarena Ucelay, María JoséFunez, Darío GustavoVillegas, María PaulaCiencias InformáticasEarly Risk PredictionEarly Depression DetectionText RepresentationSemantic Analysis TechniquesTemporal Variation of TermsThe increasing use of social media allows the extraction of valuable information to early prevent some risks. Such is the case of the use of blogs to early detect people with signs of depression. In order to address this problem, we describe k-temporal variation of terms (k-TVT), a method which uses the variation of vocabulary along the different time steps as concept space to represent the documents. An interesting particularity of this approach is the possibility of setting a parameter (the k value) depending on the urgency (earliness) level required to detect the risky (depressed) cases. Results on the early detection of depression data set from eRisk 2017 seem to confirm the robustness of k-TVT for different urgency levels using SVM as classifier. Besides, some recent results on an extension of this collection would confirm the effectiveness of k-TVT as one of the state-of-the-art methods for early depression detection.XVI Workshop Bases de Datos y Minería de Datos.Red de Universidades con Carreras en Informática2019-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf547-556http://sedici.unlp.edu.ar/handle/10915/90534enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1info:eu-repo/semantics/reference/hdl/10915/90359info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:18:37Zoai:sedici.unlp.edu.ar:10915/90534Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:18:37.945SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
k-TVT: a flexible and effective method for early depression detection |
title |
k-TVT: a flexible and effective method for early depression detection |
spellingShingle |
k-TVT: a flexible and effective method for early depression detection Cagnina, Leticia Cecilia Ciencias Informáticas Early Risk Prediction Early Depression Detection Text Representation Semantic Analysis Techniques Temporal Variation of Terms |
title_short |
k-TVT: a flexible and effective method for early depression detection |
title_full |
k-TVT: a flexible and effective method for early depression detection |
title_fullStr |
k-TVT: a flexible and effective method for early depression detection |
title_full_unstemmed |
k-TVT: a flexible and effective method for early depression detection |
title_sort |
k-TVT: a flexible and effective method for early depression detection |
dc.creator.none.fl_str_mv |
Cagnina, Leticia Cecilia Errecalde, Marcelo Luis Garciarena Ucelay, María José Funez, Darío Gustavo Villegas, María Paula |
author |
Cagnina, Leticia Cecilia |
author_facet |
Cagnina, Leticia Cecilia Errecalde, Marcelo Luis Garciarena Ucelay, María José Funez, Darío Gustavo Villegas, María Paula |
author_role |
author |
author2 |
Errecalde, Marcelo Luis Garciarena Ucelay, María José Funez, Darío Gustavo Villegas, María Paula |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Early Risk Prediction Early Depression Detection Text Representation Semantic Analysis Techniques Temporal Variation of Terms |
topic |
Ciencias Informáticas Early Risk Prediction Early Depression Detection Text Representation Semantic Analysis Techniques Temporal Variation of Terms |
dc.description.none.fl_txt_mv |
The increasing use of social media allows the extraction of valuable information to early prevent some risks. Such is the case of the use of blogs to early detect people with signs of depression. In order to address this problem, we describe k-temporal variation of terms (k-TVT), a method which uses the variation of vocabulary along the different time steps as concept space to represent the documents. An interesting particularity of this approach is the possibility of setting a parameter (the k value) depending on the urgency (earliness) level required to detect the risky (depressed) cases. Results on the early detection of depression data set from eRisk 2017 seem to confirm the robustness of k-TVT for different urgency levels using SVM as classifier. Besides, some recent results on an extension of this collection would confirm the effectiveness of k-TVT as one of the state-of-the-art methods for early depression detection. XVI Workshop Bases de Datos y Minería de Datos. Red de Universidades con Carreras en Informática |
description |
The increasing use of social media allows the extraction of valuable information to early prevent some risks. Such is the case of the use of blogs to early detect people with signs of depression. In order to address this problem, we describe k-temporal variation of terms (k-TVT), a method which uses the variation of vocabulary along the different time steps as concept space to represent the documents. An interesting particularity of this approach is the possibility of setting a parameter (the k value) depending on the urgency (earliness) level required to detect the risky (depressed) cases. Results on the early detection of depression data set from eRisk 2017 seem to confirm the robustness of k-TVT for different urgency levels using SVM as classifier. Besides, some recent results on an extension of this collection would confirm the effectiveness of k-TVT as one of the state-of-the-art methods for early depression detection. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/90534 |
url |
http://sedici.unlp.edu.ar/handle/10915/90534 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1 info:eu-repo/semantics/reference/hdl/10915/90359 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 547-556 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616059832762368 |
score |
13.069144 |