k-TVT: a flexible and effective method for early depression detection

Autores
Cagnina, Leticia Cecilia; Errecalde, Marcelo Luis; Garciarena Ucelay, María José; Funez, Darío Gustavo; Villegas, María Paula
Año de publicación
2019
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The increasing use of social media allows the extraction of valuable information to early prevent some risks. Such is the case of the use of blogs to early detect people with signs of depression. In order to address this problem, we describe k-temporal variation of terms (k-TVT), a method which uses the variation of vocabulary along the different time steps as concept space to represent the documents. An interesting particularity of this approach is the possibility of setting a parameter (the k value) depending on the urgency (earliness) level required to detect the risky (depressed) cases. Results on the early detection of depression data set from eRisk 2017 seem to confirm the robustness of k-TVT for different urgency levels using SVM as classifier. Besides, some recent results on an extension of this collection would confirm the effectiveness of k-TVT as one of the state-of-the-art methods for early depression detection.
XVI Workshop Bases de Datos y Minería de Datos.
Red de Universidades con Carreras en Informática
Materia
Ciencias Informáticas
Early Risk Prediction
Early Depression Detection
Text Representation
Semantic Analysis Techniques
Temporal Variation of Terms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/90534

id SEDICI_b76814e1b0e19a10f167aba27d00827b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/90534
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling k-TVT: a flexible and effective method for early depression detectionCagnina, Leticia CeciliaErrecalde, Marcelo LuisGarciarena Ucelay, María JoséFunez, Darío GustavoVillegas, María PaulaCiencias InformáticasEarly Risk PredictionEarly Depression DetectionText RepresentationSemantic Analysis TechniquesTemporal Variation of TermsThe increasing use of social media allows the extraction of valuable information to early prevent some risks. Such is the case of the use of blogs to early detect people with signs of depression. In order to address this problem, we describe k-temporal variation of terms (k-TVT), a method which uses the variation of vocabulary along the different time steps as concept space to represent the documents. An interesting particularity of this approach is the possibility of setting a parameter (the k value) depending on the urgency (earliness) level required to detect the risky (depressed) cases. Results on the early detection of depression data set from eRisk 2017 seem to confirm the robustness of k-TVT for different urgency levels using SVM as classifier. Besides, some recent results on an extension of this collection would confirm the effectiveness of k-TVT as one of the state-of-the-art methods for early depression detection.XVI Workshop Bases de Datos y Minería de Datos.Red de Universidades con Carreras en Informática2019-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf547-556http://sedici.unlp.edu.ar/handle/10915/90534enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1info:eu-repo/semantics/reference/hdl/10915/90359info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:18:37Zoai:sedici.unlp.edu.ar:10915/90534Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:18:37.945SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv k-TVT: a flexible and effective method for early depression detection
title k-TVT: a flexible and effective method for early depression detection
spellingShingle k-TVT: a flexible and effective method for early depression detection
Cagnina, Leticia Cecilia
Ciencias Informáticas
Early Risk Prediction
Early Depression Detection
Text Representation
Semantic Analysis Techniques
Temporal Variation of Terms
title_short k-TVT: a flexible and effective method for early depression detection
title_full k-TVT: a flexible and effective method for early depression detection
title_fullStr k-TVT: a flexible and effective method for early depression detection
title_full_unstemmed k-TVT: a flexible and effective method for early depression detection
title_sort k-TVT: a flexible and effective method for early depression detection
dc.creator.none.fl_str_mv Cagnina, Leticia Cecilia
Errecalde, Marcelo Luis
Garciarena Ucelay, María José
Funez, Darío Gustavo
Villegas, María Paula
author Cagnina, Leticia Cecilia
author_facet Cagnina, Leticia Cecilia
Errecalde, Marcelo Luis
Garciarena Ucelay, María José
Funez, Darío Gustavo
Villegas, María Paula
author_role author
author2 Errecalde, Marcelo Luis
Garciarena Ucelay, María José
Funez, Darío Gustavo
Villegas, María Paula
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Early Risk Prediction
Early Depression Detection
Text Representation
Semantic Analysis Techniques
Temporal Variation of Terms
topic Ciencias Informáticas
Early Risk Prediction
Early Depression Detection
Text Representation
Semantic Analysis Techniques
Temporal Variation of Terms
dc.description.none.fl_txt_mv The increasing use of social media allows the extraction of valuable information to early prevent some risks. Such is the case of the use of blogs to early detect people with signs of depression. In order to address this problem, we describe k-temporal variation of terms (k-TVT), a method which uses the variation of vocabulary along the different time steps as concept space to represent the documents. An interesting particularity of this approach is the possibility of setting a parameter (the k value) depending on the urgency (earliness) level required to detect the risky (depressed) cases. Results on the early detection of depression data set from eRisk 2017 seem to confirm the robustness of k-TVT for different urgency levels using SVM as classifier. Besides, some recent results on an extension of this collection would confirm the effectiveness of k-TVT as one of the state-of-the-art methods for early depression detection.
XVI Workshop Bases de Datos y Minería de Datos.
Red de Universidades con Carreras en Informática
description The increasing use of social media allows the extraction of valuable information to early prevent some risks. Such is the case of the use of blogs to early detect people with signs of depression. In order to address this problem, we describe k-temporal variation of terms (k-TVT), a method which uses the variation of vocabulary along the different time steps as concept space to represent the documents. An interesting particularity of this approach is the possibility of setting a parameter (the k value) depending on the urgency (earliness) level required to detect the risky (depressed) cases. Results on the early detection of depression data set from eRisk 2017 seem to confirm the robustness of k-TVT for different urgency levels using SVM as classifier. Besides, some recent results on an extension of this collection would confirm the effectiveness of k-TVT as one of the state-of-the-art methods for early depression detection.
publishDate 2019
dc.date.none.fl_str_mv 2019-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/90534
url http://sedici.unlp.edu.ar/handle/10915/90534
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1
info:eu-repo/semantics/reference/hdl/10915/90359
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
547-556
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616059832762368
score 13.069144