Fully dynamic and memory-adaptative spatial approximation trees
- Autores
- Arroyuelo, Diego; Navarro, Gonzalo; Reyes, Nora Susana
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Hybrid dynamic spatial approximation trees are recently proposed data structures for searching in metric spaces, based on combining the concepts of spatial approximation and pivot based algorithms. These data structures are hybrid schemes, with the full features of dynamic spatial approximation trees and able of using the available memory to improve the query time. It has been shown that they compare favorably against alternative data structures in spaces of medium difficulty. In this paper we complete and improve hybrid dynamic spatial approximation trees, by presenting a new search alternative, an algorithm to remove objects from the tree, and an improved way of managing the available memory. The result is a fully dynamic and optimized data structure for similarity searching in metric spaces.
Eje: Teoría (TEOR)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
databases
data structures
metric spaces
Algorithms
base de datos
Metrics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22852
Ver los metadatos del registro completo
id |
SEDICI_10496255f2506dc95d6ea3b5662fab69 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22852 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Fully dynamic and memory-adaptative spatial approximation treesArroyuelo, DiegoNavarro, GonzaloReyes, Nora SusanaCiencias Informáticasdatabasesdata structuresmetric spacesAlgorithmsbase de datosMetricsHybrid dynamic spatial approximation trees are recently proposed data structures for searching in metric spaces, based on combining the concepts of spatial approximation and pivot based algorithms. These data structures are hybrid schemes, with the full features of dynamic spatial approximation trees and able of using the available memory to improve the query time. It has been shown that they compare favorably against alternative data structures in spaces of medium difficulty. In this paper we complete and improve hybrid dynamic spatial approximation trees, by presenting a new search alternative, an algorithm to remove objects from the tree, and an improved way of managing the available memory. The result is a fully dynamic and optimized data structure for similarity searching in metric spaces.Eje: Teoría (TEOR)Red de Universidades con Carreras en Informática (RedUNCI)2003-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1502-1513http://sedici.unlp.edu.ar/handle/10915/22852enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:02Zoai:sedici.unlp.edu.ar:10915/22852Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:02.651SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Fully dynamic and memory-adaptative spatial approximation trees |
title |
Fully dynamic and memory-adaptative spatial approximation trees |
spellingShingle |
Fully dynamic and memory-adaptative spatial approximation trees Arroyuelo, Diego Ciencias Informáticas databases data structures metric spaces Algorithms base de datos Metrics |
title_short |
Fully dynamic and memory-adaptative spatial approximation trees |
title_full |
Fully dynamic and memory-adaptative spatial approximation trees |
title_fullStr |
Fully dynamic and memory-adaptative spatial approximation trees |
title_full_unstemmed |
Fully dynamic and memory-adaptative spatial approximation trees |
title_sort |
Fully dynamic and memory-adaptative spatial approximation trees |
dc.creator.none.fl_str_mv |
Arroyuelo, Diego Navarro, Gonzalo Reyes, Nora Susana |
author |
Arroyuelo, Diego |
author_facet |
Arroyuelo, Diego Navarro, Gonzalo Reyes, Nora Susana |
author_role |
author |
author2 |
Navarro, Gonzalo Reyes, Nora Susana |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas databases data structures metric spaces Algorithms base de datos Metrics |
topic |
Ciencias Informáticas databases data structures metric spaces Algorithms base de datos Metrics |
dc.description.none.fl_txt_mv |
Hybrid dynamic spatial approximation trees are recently proposed data structures for searching in metric spaces, based on combining the concepts of spatial approximation and pivot based algorithms. These data structures are hybrid schemes, with the full features of dynamic spatial approximation trees and able of using the available memory to improve the query time. It has been shown that they compare favorably against alternative data structures in spaces of medium difficulty. In this paper we complete and improve hybrid dynamic spatial approximation trees, by presenting a new search alternative, an algorithm to remove objects from the tree, and an improved way of managing the available memory. The result is a fully dynamic and optimized data structure for similarity searching in metric spaces. Eje: Teoría (TEOR) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Hybrid dynamic spatial approximation trees are recently proposed data structures for searching in metric spaces, based on combining the concepts of spatial approximation and pivot based algorithms. These data structures are hybrid schemes, with the full features of dynamic spatial approximation trees and able of using the available memory to improve the query time. It has been shown that they compare favorably against alternative data structures in spaces of medium difficulty. In this paper we complete and improve hybrid dynamic spatial approximation trees, by presenting a new search alternative, an algorithm to remove objects from the tree, and an improved way of managing the available memory. The result is a fully dynamic and optimized data structure for similarity searching in metric spaces. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22852 |
url |
http://sedici.unlp.edu.ar/handle/10915/22852 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 1502-1513 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260118805151744 |
score |
13.13397 |