Clustering a través de técnicas bio-inspiradas

Autores
Ingaramo, Diego Alejandro; Leguizamón, Guillermo; Errecalde, Marcelo Luis
Año de publicación
2005
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Este artículo describe los trabajos de investigación y desarrollo que se están llevando a cabo en el Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC), relacionados a la aplicación de técnicas bio-insipiradas a problemas de minería de datos, y en particular, a tareas de clustering. Intuitivamente, una tarea de clustering consiste en la clasificación no supervisada de patrones (observaciones, datos, vectores, etc.) en grupos. Este problema ha sido analizado en varios contextos y por investigadores de distintas disciplinas, reflejando su amplia utilidad. Si bien se han propuesto distintas alternativas para abordar las tareas de clustering, existe un área particularmente interesante y novedosa que ha planteado distintos enfoques bio-inspirados que incluyen los algoritmos genéticos y algoritmos basados en la metáfora del comportamiento de las hormigas. En este trabajo, describimos brevemente algunos de los trabajos que se están llevando a cabo en el LIDIC referidos a la utilización de algoritmos basados en el comportamiento de hormigas en la Minería de Datos, y más específicamente, a la tarea de clustering. Entre estos algoritmos podemos mencionar a AntTree, con el cual se ha experimentado utilizando distintas instancias del problema de clustering, reportándose algunas de las ventajas y desventajas observadas en este algoritmo en el trabajo experimental. También se proponen extensiones a este algoritmo que permitirían flexibilizar el proceso del descubrimiento de clusters dentro de los datos a analizar.
Eje: Otros
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Clustering
técnicas bio-inspiradas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/21196

id SEDICI_294059f584e04da5874846297e12e088
oai_identifier_str oai:sedici.unlp.edu.ar:10915/21196
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Clustering a través de técnicas bio-inspiradasIngaramo, Diego AlejandroLeguizamón, GuillermoErrecalde, Marcelo LuisCiencias InformáticasClusteringtécnicas bio-inspiradasEste artículo describe los trabajos de investigación y desarrollo que se están llevando a cabo en el Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC), relacionados a la aplicación de técnicas bio-insipiradas a problemas de minería de datos, y en particular, a tareas de clustering. Intuitivamente, una tarea de clustering consiste en la clasificación no supervisada de patrones (observaciones, datos, vectores, etc.) en grupos. Este problema ha sido analizado en varios contextos y por investigadores de distintas disciplinas, reflejando su amplia utilidad. Si bien se han propuesto distintas alternativas para abordar las tareas de clustering, existe un área particularmente interesante y novedosa que ha planteado distintos enfoques bio-inspirados que incluyen los algoritmos genéticos y algoritmos basados en la metáfora del comportamiento de las hormigas. En este trabajo, describimos brevemente algunos de los trabajos que se están llevando a cabo en el LIDIC referidos a la utilización de algoritmos basados en el comportamiento de hormigas en la Minería de Datos, y más específicamente, a la tarea de clustering. Entre estos algoritmos podemos mencionar a AntTree, con el cual se ha experimentado utilizando distintas instancias del problema de clustering, reportándose algunas de las ventajas y desventajas observadas en este algoritmo en el trabajo experimental. También se proponen extensiones a este algoritmo que permitirían flexibilizar el proceso del descubrimiento de clusters dentro de los datos a analizar.Eje: OtrosRed de Universidades con Carreras en Informática (RedUNCI)2005-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf368-372http://sedici.unlp.edu.ar/handle/10915/21196spainfo:eu-repo/semantics/altIdentifier/isbn/950-665-337-2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:10Zoai:sedici.unlp.edu.ar:10915/21196Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:10.652SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Clustering a través de técnicas bio-inspiradas
title Clustering a través de técnicas bio-inspiradas
spellingShingle Clustering a través de técnicas bio-inspiradas
Ingaramo, Diego Alejandro
Ciencias Informáticas
Clustering
técnicas bio-inspiradas
title_short Clustering a través de técnicas bio-inspiradas
title_full Clustering a través de técnicas bio-inspiradas
title_fullStr Clustering a través de técnicas bio-inspiradas
title_full_unstemmed Clustering a través de técnicas bio-inspiradas
title_sort Clustering a través de técnicas bio-inspiradas
dc.creator.none.fl_str_mv Ingaramo, Diego Alejandro
Leguizamón, Guillermo
Errecalde, Marcelo Luis
author Ingaramo, Diego Alejandro
author_facet Ingaramo, Diego Alejandro
Leguizamón, Guillermo
Errecalde, Marcelo Luis
author_role author
author2 Leguizamón, Guillermo
Errecalde, Marcelo Luis
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Clustering
técnicas bio-inspiradas
topic Ciencias Informáticas
Clustering
técnicas bio-inspiradas
dc.description.none.fl_txt_mv Este artículo describe los trabajos de investigación y desarrollo que se están llevando a cabo en el Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC), relacionados a la aplicación de técnicas bio-insipiradas a problemas de minería de datos, y en particular, a tareas de clustering. Intuitivamente, una tarea de clustering consiste en la clasificación no supervisada de patrones (observaciones, datos, vectores, etc.) en grupos. Este problema ha sido analizado en varios contextos y por investigadores de distintas disciplinas, reflejando su amplia utilidad. Si bien se han propuesto distintas alternativas para abordar las tareas de clustering, existe un área particularmente interesante y novedosa que ha planteado distintos enfoques bio-inspirados que incluyen los algoritmos genéticos y algoritmos basados en la metáfora del comportamiento de las hormigas. En este trabajo, describimos brevemente algunos de los trabajos que se están llevando a cabo en el LIDIC referidos a la utilización de algoritmos basados en el comportamiento de hormigas en la Minería de Datos, y más específicamente, a la tarea de clustering. Entre estos algoritmos podemos mencionar a AntTree, con el cual se ha experimentado utilizando distintas instancias del problema de clustering, reportándose algunas de las ventajas y desventajas observadas en este algoritmo en el trabajo experimental. También se proponen extensiones a este algoritmo que permitirían flexibilizar el proceso del descubrimiento de clusters dentro de los datos a analizar.
Eje: Otros
Red de Universidades con Carreras en Informática (RedUNCI)
description Este artículo describe los trabajos de investigación y desarrollo que se están llevando a cabo en el Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC), relacionados a la aplicación de técnicas bio-insipiradas a problemas de minería de datos, y en particular, a tareas de clustering. Intuitivamente, una tarea de clustering consiste en la clasificación no supervisada de patrones (observaciones, datos, vectores, etc.) en grupos. Este problema ha sido analizado en varios contextos y por investigadores de distintas disciplinas, reflejando su amplia utilidad. Si bien se han propuesto distintas alternativas para abordar las tareas de clustering, existe un área particularmente interesante y novedosa que ha planteado distintos enfoques bio-inspirados que incluyen los algoritmos genéticos y algoritmos basados en la metáfora del comportamiento de las hormigas. En este trabajo, describimos brevemente algunos de los trabajos que se están llevando a cabo en el LIDIC referidos a la utilización de algoritmos basados en el comportamiento de hormigas en la Minería de Datos, y más específicamente, a la tarea de clustering. Entre estos algoritmos podemos mencionar a AntTree, con el cual se ha experimentado utilizando distintas instancias del problema de clustering, reportándose algunas de las ventajas y desventajas observadas en este algoritmo en el trabajo experimental. También se proponen extensiones a este algoritmo que permitirían flexibilizar el proceso del descubrimiento de clusters dentro de los datos a analizar.
publishDate 2005
dc.date.none.fl_str_mv 2005-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/21196
url http://sedici.unlp.edu.ar/handle/10915/21196
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/950-665-337-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
368-372
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846063896824119296
score 13.22299