Pole structure of the Hamiltonian ζ-function for a singular potential

Autores
Falomir, Horacio Alberto; González Pisani, Pablo Andrés; Wipf, Andreas
Año de publicación
2002
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the pole structure of the ζ-function associated with the Hamiltonian H of a quantum mechanical particle living in the half-line R⁺, subject to the singular potential gx⁻² + x². We show that H admits nontrivial self-adjoint extensions (SAE) in a given range of values of the parameter g. The ζ-functions of these operators present poles which depend on g and, in general, do not coincide with half an integer (they can even be irrational). The corresponding residues depend on the SAE considered.
Facultad de Ciencias Exactas
Instituto de Física La Plata
Materia
Ciencias Exactas
Física
Operator theory
Functional analytical methods
Quantum theory
Ordinary differential operators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/129682

id SEDICI_aa250ed532bf9f61a10314991debff89
oai_identifier_str oai:sedici.unlp.edu.ar:10915/129682
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Pole structure of the Hamiltonian ζ-function for a singular potentialFalomir, Horacio AlbertoGonzález Pisani, Pablo AndrésWipf, AndreasCiencias ExactasFísicaOperator theoryFunctional analytical methodsQuantum theoryOrdinary differential operatorsWe study the pole structure of the ζ-function associated with the Hamiltonian H of a quantum mechanical particle living in the half-line R⁺, subject to the singular potential gx⁻² + x². We show that H admits nontrivial self-adjoint extensions (SAE) in a given range of values of the parameter g. The ζ-functions of these operators present poles which depend on g and, in general, do not coincide with half an integer (they can even be irrational). The corresponding residues depend on the SAE considered.Facultad de Ciencias ExactasInstituto de Física La Plata2002-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf5427-5444http://sedici.unlp.edu.ar/handle/10915/129682enginfo:eu-repo/semantics/altIdentifier/issn/0305-4470info:eu-repo/semantics/altIdentifier/issn/1361-6447info:eu-repo/semantics/altIdentifier/arxiv/math-ph/0112019info:eu-repo/semantics/altIdentifier/doi/10.1088/0305-4470/35/26/306info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:13Zoai:sedici.unlp.edu.ar:10915/129682Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:13.973SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Pole structure of the Hamiltonian ζ-function for a singular potential
title Pole structure of the Hamiltonian ζ-function for a singular potential
spellingShingle Pole structure of the Hamiltonian ζ-function for a singular potential
Falomir, Horacio Alberto
Ciencias Exactas
Física
Operator theory
Functional analytical methods
Quantum theory
Ordinary differential operators
title_short Pole structure of the Hamiltonian ζ-function for a singular potential
title_full Pole structure of the Hamiltonian ζ-function for a singular potential
title_fullStr Pole structure of the Hamiltonian ζ-function for a singular potential
title_full_unstemmed Pole structure of the Hamiltonian ζ-function for a singular potential
title_sort Pole structure of the Hamiltonian ζ-function for a singular potential
dc.creator.none.fl_str_mv Falomir, Horacio Alberto
González Pisani, Pablo Andrés
Wipf, Andreas
author Falomir, Horacio Alberto
author_facet Falomir, Horacio Alberto
González Pisani, Pablo Andrés
Wipf, Andreas
author_role author
author2 González Pisani, Pablo Andrés
Wipf, Andreas
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
Operator theory
Functional analytical methods
Quantum theory
Ordinary differential operators
topic Ciencias Exactas
Física
Operator theory
Functional analytical methods
Quantum theory
Ordinary differential operators
dc.description.none.fl_txt_mv We study the pole structure of the ζ-function associated with the Hamiltonian H of a quantum mechanical particle living in the half-line R⁺, subject to the singular potential gx⁻² + x². We show that H admits nontrivial self-adjoint extensions (SAE) in a given range of values of the parameter g. The ζ-functions of these operators present poles which depend on g and, in general, do not coincide with half an integer (they can even be irrational). The corresponding residues depend on the SAE considered.
Facultad de Ciencias Exactas
Instituto de Física La Plata
description We study the pole structure of the ζ-function associated with the Hamiltonian H of a quantum mechanical particle living in the half-line R⁺, subject to the singular potential gx⁻² + x². We show that H admits nontrivial self-adjoint extensions (SAE) in a given range of values of the parameter g. The ζ-functions of these operators present poles which depend on g and, in general, do not coincide with half an integer (they can even be irrational). The corresponding residues depend on the SAE considered.
publishDate 2002
dc.date.none.fl_str_mv 2002-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/129682
url http://sedici.unlp.edu.ar/handle/10915/129682
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0305-4470
info:eu-repo/semantics/altIdentifier/issn/1361-6447
info:eu-repo/semantics/altIdentifier/arxiv/math-ph/0112019
info:eu-repo/semantics/altIdentifier/doi/10.1088/0305-4470/35/26/306
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
5427-5444
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616192429391872
score 13.070432