Convolution of n-Dimensional Tempered Ultradistributions and Field Theory
- Autores
- Bollini, C. G.; Rocca, Mario Carlos
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, a general definition of convolution between two arbitrary tempered ultradistributions is given. When one of the tempered ultradistributions is rapidly decreasing this definition coincides with the definition of J. Sebastiao e Silva. In the four-dimensional case, when the tempered ultradistributions are even in the variables k0 and ρ, we obtain an expression for the convolution, which is more suitable for practical applications. The product of two arbitrary even (in the variables x0 and r) four-dimensional distributions of exponential type is defined via the convolution of its corresponding Fourier transforms. With this definition of convolution, we treat the problem of singular products of Green Functions in Quantum Field Theory (for Renormalizable as well as for nonrenormalizable theories). Several examples of convolution of two tempered ultradistributions are given. In particular, we calculate the convolution of two massless Wheeler's propagators and the convolution of two complex mass Wheeler's propagators.
Fil: Bollini, C. G.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Rocca, Mario Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
Formalism
Foundations
Functional Analytical Methods
Quantum Field Theory
Ultradistributions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/72452
Ver los metadatos del registro completo
id |
CONICETDig_ccac630e7f6f362d2b3aacb6893f661b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/72452 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convolution of n-Dimensional Tempered Ultradistributions and Field TheoryBollini, C. G.Rocca, Mario CarlosFormalismFoundationsFunctional Analytical MethodsQuantum Field TheoryUltradistributionshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this work, a general definition of convolution between two arbitrary tempered ultradistributions is given. When one of the tempered ultradistributions is rapidly decreasing this definition coincides with the definition of J. Sebastiao e Silva. In the four-dimensional case, when the tempered ultradistributions are even in the variables k0 and ρ, we obtain an expression for the convolution, which is more suitable for practical applications. The product of two arbitrary even (in the variables x0 and r) four-dimensional distributions of exponential type is defined via the convolution of its corresponding Fourier transforms. With this definition of convolution, we treat the problem of singular products of Green Functions in Quantum Field Theory (for Renormalizable as well as for nonrenormalizable theories). Several examples of convolution of two tempered ultradistributions are given. In particular, we calculate the convolution of two massless Wheeler's propagators and the convolution of two complex mass Wheeler's propagators.Fil: Bollini, C. G.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Rocca, Mario Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaSpringer/Plenum Publishers2004-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/72452Bollini, C. G.; Rocca, Mario Carlos; Convolution of n-Dimensional Tempered Ultradistributions and Field Theory; Springer/Plenum Publishers; International Journal of Theoretical Physics; 43; 1; 1-2004; 59-760020-7748CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1023/B:IJTP.0000028850.35090.24info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/hep-th/0309271info:eu-repo/semantics/altIdentifier/doi/10.1023/B:IJTP.0000028850.35090.24info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:47Zoai:ri.conicet.gov.ar:11336/72452instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:47.457CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convolution of n-Dimensional Tempered Ultradistributions and Field Theory |
title |
Convolution of n-Dimensional Tempered Ultradistributions and Field Theory |
spellingShingle |
Convolution of n-Dimensional Tempered Ultradistributions and Field Theory Bollini, C. G. Formalism Foundations Functional Analytical Methods Quantum Field Theory Ultradistributions |
title_short |
Convolution of n-Dimensional Tempered Ultradistributions and Field Theory |
title_full |
Convolution of n-Dimensional Tempered Ultradistributions and Field Theory |
title_fullStr |
Convolution of n-Dimensional Tempered Ultradistributions and Field Theory |
title_full_unstemmed |
Convolution of n-Dimensional Tempered Ultradistributions and Field Theory |
title_sort |
Convolution of n-Dimensional Tempered Ultradistributions and Field Theory |
dc.creator.none.fl_str_mv |
Bollini, C. G. Rocca, Mario Carlos |
author |
Bollini, C. G. |
author_facet |
Bollini, C. G. Rocca, Mario Carlos |
author_role |
author |
author2 |
Rocca, Mario Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Formalism Foundations Functional Analytical Methods Quantum Field Theory Ultradistributions |
topic |
Formalism Foundations Functional Analytical Methods Quantum Field Theory Ultradistributions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, a general definition of convolution between two arbitrary tempered ultradistributions is given. When one of the tempered ultradistributions is rapidly decreasing this definition coincides with the definition of J. Sebastiao e Silva. In the four-dimensional case, when the tempered ultradistributions are even in the variables k0 and ρ, we obtain an expression for the convolution, which is more suitable for practical applications. The product of two arbitrary even (in the variables x0 and r) four-dimensional distributions of exponential type is defined via the convolution of its corresponding Fourier transforms. With this definition of convolution, we treat the problem of singular products of Green Functions in Quantum Field Theory (for Renormalizable as well as for nonrenormalizable theories). Several examples of convolution of two tempered ultradistributions are given. In particular, we calculate the convolution of two massless Wheeler's propagators and the convolution of two complex mass Wheeler's propagators. Fil: Bollini, C. G.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina Fil: Rocca, Mario Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
In this work, a general definition of convolution between two arbitrary tempered ultradistributions is given. When one of the tempered ultradistributions is rapidly decreasing this definition coincides with the definition of J. Sebastiao e Silva. In the four-dimensional case, when the tempered ultradistributions are even in the variables k0 and ρ, we obtain an expression for the convolution, which is more suitable for practical applications. The product of two arbitrary even (in the variables x0 and r) four-dimensional distributions of exponential type is defined via the convolution of its corresponding Fourier transforms. With this definition of convolution, we treat the problem of singular products of Green Functions in Quantum Field Theory (for Renormalizable as well as for nonrenormalizable theories). Several examples of convolution of two tempered ultradistributions are given. In particular, we calculate the convolution of two massless Wheeler's propagators and the convolution of two complex mass Wheeler's propagators. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/72452 Bollini, C. G.; Rocca, Mario Carlos; Convolution of n-Dimensional Tempered Ultradistributions and Field Theory; Springer/Plenum Publishers; International Journal of Theoretical Physics; 43; 1; 1-2004; 59-76 0020-7748 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/72452 |
identifier_str_mv |
Bollini, C. G.; Rocca, Mario Carlos; Convolution of n-Dimensional Tempered Ultradistributions and Field Theory; Springer/Plenum Publishers; International Journal of Theoretical Physics; 43; 1; 1-2004; 59-76 0020-7748 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1023/B:IJTP.0000028850.35090.24 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/hep-th/0309271 info:eu-repo/semantics/altIdentifier/doi/10.1023/B:IJTP.0000028850.35090.24 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer/Plenum Publishers |
publisher.none.fl_str_mv |
Springer/Plenum Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613460114014208 |
score |
13.070432 |