Denoising audio signals in the non-negative auditory cortical domain

Autores
Martínez, C.; Goddard, J.; Di Persi, L.L.; Milone, Diego Humberto; Rufiner, Hugo Leonardo
Año de publicación
2011
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In this work, a biologically-inspired denoising method for audio signals is presented, which takes advantage of an approximation to the acoustical signal representation at the auditory cortical level. It is based on an optimal dictionary of atoms, estimated from early auditory spectrograms, and the Basis Pursuit algorithm to approximate the cortical activations. The proposed approach employs non-negative sparse coding to pursue a simplified denoising algorithm which exploits a priori information from both clean signals and noise. The method was applied to artificial signals constructed from simultaneous chirps, corrupted with additive noise. Results showed that using an objective quality measure, the method proposed here can improve the audio quality when it is applied to noisy signals.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
auditory
cortical domain
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/125316

id SEDICI_a70f2ac153d9c87711893f1b94a7c3fb
oai_identifier_str oai:sedici.unlp.edu.ar:10915/125316
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Denoising audio signals in the non-negative auditory cortical domainMartínez, C.Goddard, J.Di Persi, L.L.Milone, Diego HumbertoRufiner, Hugo LeonardoCiencias Informáticasauditorycortical domainIn this work, a biologically-inspired denoising method for audio signals is presented, which takes advantage of an approximation to the acoustical signal representation at the auditory cortical level. It is based on an optimal dictionary of atoms, estimated from early auditory spectrograms, and the Basis Pursuit algorithm to approximate the cortical activations. The proposed approach employs non-negative sparse coding to pursue a simplified denoising algorithm which exploits a priori information from both clean signals and noise. The method was applied to artificial signals constructed from simultaneous chirps, corrupted with additive noise. Results showed that using an objective quality measure, the method proposed here can improve the audio quality when it is applied to noisy signals.Sociedad Argentina de Informática e Investigación Operativa2011-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf168-179http://sedici.unlp.edu.ar/handle/10915/125316enginfo:eu-repo/semantics/altIdentifier/issn/1850-2806info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:14Zoai:sedici.unlp.edu.ar:10915/125316Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:14.83SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Denoising audio signals in the non-negative auditory cortical domain
title Denoising audio signals in the non-negative auditory cortical domain
spellingShingle Denoising audio signals in the non-negative auditory cortical domain
Martínez, C.
Ciencias Informáticas
auditory
cortical domain
title_short Denoising audio signals in the non-negative auditory cortical domain
title_full Denoising audio signals in the non-negative auditory cortical domain
title_fullStr Denoising audio signals in the non-negative auditory cortical domain
title_full_unstemmed Denoising audio signals in the non-negative auditory cortical domain
title_sort Denoising audio signals in the non-negative auditory cortical domain
dc.creator.none.fl_str_mv Martínez, C.
Goddard, J.
Di Persi, L.L.
Milone, Diego Humberto
Rufiner, Hugo Leonardo
author Martínez, C.
author_facet Martínez, C.
Goddard, J.
Di Persi, L.L.
Milone, Diego Humberto
Rufiner, Hugo Leonardo
author_role author
author2 Goddard, J.
Di Persi, L.L.
Milone, Diego Humberto
Rufiner, Hugo Leonardo
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
auditory
cortical domain
topic Ciencias Informáticas
auditory
cortical domain
dc.description.none.fl_txt_mv In this work, a biologically-inspired denoising method for audio signals is presented, which takes advantage of an approximation to the acoustical signal representation at the auditory cortical level. It is based on an optimal dictionary of atoms, estimated from early auditory spectrograms, and the Basis Pursuit algorithm to approximate the cortical activations. The proposed approach employs non-negative sparse coding to pursue a simplified denoising algorithm which exploits a priori information from both clean signals and noise. The method was applied to artificial signals constructed from simultaneous chirps, corrupted with additive noise. Results showed that using an objective quality measure, the method proposed here can improve the audio quality when it is applied to noisy signals.
Sociedad Argentina de Informática e Investigación Operativa
description In this work, a biologically-inspired denoising method for audio signals is presented, which takes advantage of an approximation to the acoustical signal representation at the auditory cortical level. It is based on an optimal dictionary of atoms, estimated from early auditory spectrograms, and the Basis Pursuit algorithm to approximate the cortical activations. The proposed approach employs non-negative sparse coding to pursue a simplified denoising algorithm which exploits a priori information from both clean signals and noise. The method was applied to artificial signals constructed from simultaneous chirps, corrupted with additive noise. Results showed that using an objective quality measure, the method proposed here can improve the audio quality when it is applied to noisy signals.
publishDate 2011
dc.date.none.fl_str_mv 2011-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/125316
url http://sedici.unlp.edu.ar/handle/10915/125316
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1850-2806
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
168-179
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260520367816704
score 13.13397