Denoising audio signals in the non-negative auditory cortical domain
- Autores
- Martínez, C.; Goddard, J.; Di Persi, L.L.; Milone, Diego Humberto; Rufiner, Hugo Leonardo
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this work, a biologically-inspired denoising method for audio signals is presented, which takes advantage of an approximation to the acoustical signal representation at the auditory cortical level. It is based on an optimal dictionary of atoms, estimated from early auditory spectrograms, and the Basis Pursuit algorithm to approximate the cortical activations. The proposed approach employs non-negative sparse coding to pursue a simplified denoising algorithm which exploits a priori information from both clean signals and noise. The method was applied to artificial signals constructed from simultaneous chirps, corrupted with additive noise. Results showed that using an objective quality measure, the method proposed here can improve the audio quality when it is applied to noisy signals.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
auditory
cortical domain - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/125316
Ver los metadatos del registro completo
id |
SEDICI_a70f2ac153d9c87711893f1b94a7c3fb |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/125316 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Denoising audio signals in the non-negative auditory cortical domainMartínez, C.Goddard, J.Di Persi, L.L.Milone, Diego HumbertoRufiner, Hugo LeonardoCiencias Informáticasauditorycortical domainIn this work, a biologically-inspired denoising method for audio signals is presented, which takes advantage of an approximation to the acoustical signal representation at the auditory cortical level. It is based on an optimal dictionary of atoms, estimated from early auditory spectrograms, and the Basis Pursuit algorithm to approximate the cortical activations. The proposed approach employs non-negative sparse coding to pursue a simplified denoising algorithm which exploits a priori information from both clean signals and noise. The method was applied to artificial signals constructed from simultaneous chirps, corrupted with additive noise. Results showed that using an objective quality measure, the method proposed here can improve the audio quality when it is applied to noisy signals.Sociedad Argentina de Informática e Investigación Operativa2011-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf168-179http://sedici.unlp.edu.ar/handle/10915/125316enginfo:eu-repo/semantics/altIdentifier/issn/1850-2806info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:14Zoai:sedici.unlp.edu.ar:10915/125316Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:14.83SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Denoising audio signals in the non-negative auditory cortical domain |
title |
Denoising audio signals in the non-negative auditory cortical domain |
spellingShingle |
Denoising audio signals in the non-negative auditory cortical domain Martínez, C. Ciencias Informáticas auditory cortical domain |
title_short |
Denoising audio signals in the non-negative auditory cortical domain |
title_full |
Denoising audio signals in the non-negative auditory cortical domain |
title_fullStr |
Denoising audio signals in the non-negative auditory cortical domain |
title_full_unstemmed |
Denoising audio signals in the non-negative auditory cortical domain |
title_sort |
Denoising audio signals in the non-negative auditory cortical domain |
dc.creator.none.fl_str_mv |
Martínez, C. Goddard, J. Di Persi, L.L. Milone, Diego Humberto Rufiner, Hugo Leonardo |
author |
Martínez, C. |
author_facet |
Martínez, C. Goddard, J. Di Persi, L.L. Milone, Diego Humberto Rufiner, Hugo Leonardo |
author_role |
author |
author2 |
Goddard, J. Di Persi, L.L. Milone, Diego Humberto Rufiner, Hugo Leonardo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas auditory cortical domain |
topic |
Ciencias Informáticas auditory cortical domain |
dc.description.none.fl_txt_mv |
In this work, a biologically-inspired denoising method for audio signals is presented, which takes advantage of an approximation to the acoustical signal representation at the auditory cortical level. It is based on an optimal dictionary of atoms, estimated from early auditory spectrograms, and the Basis Pursuit algorithm to approximate the cortical activations. The proposed approach employs non-negative sparse coding to pursue a simplified denoising algorithm which exploits a priori information from both clean signals and noise. The method was applied to artificial signals constructed from simultaneous chirps, corrupted with additive noise. Results showed that using an objective quality measure, the method proposed here can improve the audio quality when it is applied to noisy signals. Sociedad Argentina de Informática e Investigación Operativa |
description |
In this work, a biologically-inspired denoising method for audio signals is presented, which takes advantage of an approximation to the acoustical signal representation at the auditory cortical level. It is based on an optimal dictionary of atoms, estimated from early auditory spectrograms, and the Basis Pursuit algorithm to approximate the cortical activations. The proposed approach employs non-negative sparse coding to pursue a simplified denoising algorithm which exploits a priori information from both clean signals and noise. The method was applied to artificial signals constructed from simultaneous chirps, corrupted with additive noise. Results showed that using an objective quality measure, the method proposed here can improve the audio quality when it is applied to noisy signals. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/125316 |
url |
http://sedici.unlp.edu.ar/handle/10915/125316 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1850-2806 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 168-179 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260520367816704 |
score |
13.13397 |