Denoising sound signals in a bioinspired non-negative spectro-temporal domain

Autores
Martínez, César Ernesto; Goddard, J.; Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Rufiner, Hugo Leonardo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The representation of sound signals at the cochlea and auditory cortical level has been studied as an alternative to classical analysis methods. In this work, we put forward a recently proposed feature extraction method called approximate auditory cortical representation, based on an approximation to the statistics of discharge patterns at the primary auditory cortex. The approach here proposed estimates a non-negative sparse coding with a combined dictionary of atoms. These atoms represent the spectro-temporal receptive fields of the auditory cortical neurons, and are calculated from the auditory spectrograms of clean signal and noise. The denoising is carried out on noisy signals by the reconstruction of the signal discarding the atoms corresponding to the noise. Experiments are presented using synthetic (chirps) and real data (speech), in the presence of additive noise. For the evaluation of the new method and its variants, we used two objective measures: the perceptual evaluation of speech quality and the segmental signal-to-noise ratio. Results show that the proposed method improves the quality of the signals, mainly under severe degradation.
Fil: Martínez, César Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Goddard, J.. Universidad Autónoma Metropolitana; México
Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
Materia
Approximate Auditory Cortical Representation
Sound Denoising
Non-Negative Sparse Coding
Bioinspired Signal Processing
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/40076

id CONICETDig_997fe808c0f77a2267119e96124927fd
oai_identifier_str oai:ri.conicet.gov.ar:11336/40076
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Denoising sound signals in a bioinspired non-negative spectro-temporal domainMartínez, César ErnestoGoddard, J.Di Persia, Leandro EzequielMilone, Diego HumbertoRufiner, Hugo LeonardoApproximate Auditory Cortical RepresentationSound DenoisingNon-Negative Sparse CodingBioinspired Signal Processinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The representation of sound signals at the cochlea and auditory cortical level has been studied as an alternative to classical analysis methods. In this work, we put forward a recently proposed feature extraction method called approximate auditory cortical representation, based on an approximation to the statistics of discharge patterns at the primary auditory cortex. The approach here proposed estimates a non-negative sparse coding with a combined dictionary of atoms. These atoms represent the spectro-temporal receptive fields of the auditory cortical neurons, and are calculated from the auditory spectrograms of clean signal and noise. The denoising is carried out on noisy signals by the reconstruction of the signal discarding the atoms corresponding to the noise. Experiments are presented using synthetic (chirps) and real data (speech), in the presence of additive noise. For the evaluation of the new method and its variants, we used two objective measures: the perceptual evaluation of speech quality and the segmental signal-to-noise ratio. Results show that the proposed method improves the quality of the signals, mainly under severe degradation.Fil: Martínez, César Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Goddard, J.. Universidad Autónoma Metropolitana; MéxicoFil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; ArgentinaAcademic Press Inc Elsevier Science2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/40076Martínez, César Ernesto; Goddard, J.; Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Denoising sound signals in a bioinspired non-negative spectro-temporal domain; Academic Press Inc Elsevier Science; Digital Signal Processing; 38; 3; 3-2015; 22-311051-2004CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1051200414003509info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dsp.2014.12.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:43:04Zoai:ri.conicet.gov.ar:11336/40076instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:43:04.574CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Denoising sound signals in a bioinspired non-negative spectro-temporal domain
title Denoising sound signals in a bioinspired non-negative spectro-temporal domain
spellingShingle Denoising sound signals in a bioinspired non-negative spectro-temporal domain
Martínez, César Ernesto
Approximate Auditory Cortical Representation
Sound Denoising
Non-Negative Sparse Coding
Bioinspired Signal Processing
title_short Denoising sound signals in a bioinspired non-negative spectro-temporal domain
title_full Denoising sound signals in a bioinspired non-negative spectro-temporal domain
title_fullStr Denoising sound signals in a bioinspired non-negative spectro-temporal domain
title_full_unstemmed Denoising sound signals in a bioinspired non-negative spectro-temporal domain
title_sort Denoising sound signals in a bioinspired non-negative spectro-temporal domain
dc.creator.none.fl_str_mv Martínez, César Ernesto
Goddard, J.
Di Persia, Leandro Ezequiel
Milone, Diego Humberto
Rufiner, Hugo Leonardo
author Martínez, César Ernesto
author_facet Martínez, César Ernesto
Goddard, J.
Di Persia, Leandro Ezequiel
Milone, Diego Humberto
Rufiner, Hugo Leonardo
author_role author
author2 Goddard, J.
Di Persia, Leandro Ezequiel
Milone, Diego Humberto
Rufiner, Hugo Leonardo
author2_role author
author
author
author
dc.subject.none.fl_str_mv Approximate Auditory Cortical Representation
Sound Denoising
Non-Negative Sparse Coding
Bioinspired Signal Processing
topic Approximate Auditory Cortical Representation
Sound Denoising
Non-Negative Sparse Coding
Bioinspired Signal Processing
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The representation of sound signals at the cochlea and auditory cortical level has been studied as an alternative to classical analysis methods. In this work, we put forward a recently proposed feature extraction method called approximate auditory cortical representation, based on an approximation to the statistics of discharge patterns at the primary auditory cortex. The approach here proposed estimates a non-negative sparse coding with a combined dictionary of atoms. These atoms represent the spectro-temporal receptive fields of the auditory cortical neurons, and are calculated from the auditory spectrograms of clean signal and noise. The denoising is carried out on noisy signals by the reconstruction of the signal discarding the atoms corresponding to the noise. Experiments are presented using synthetic (chirps) and real data (speech), in the presence of additive noise. For the evaluation of the new method and its variants, we used two objective measures: the perceptual evaluation of speech quality and the segmental signal-to-noise ratio. Results show that the proposed method improves the quality of the signals, mainly under severe degradation.
Fil: Martínez, César Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Goddard, J.. Universidad Autónoma Metropolitana; México
Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina
description The representation of sound signals at the cochlea and auditory cortical level has been studied as an alternative to classical analysis methods. In this work, we put forward a recently proposed feature extraction method called approximate auditory cortical representation, based on an approximation to the statistics of discharge patterns at the primary auditory cortex. The approach here proposed estimates a non-negative sparse coding with a combined dictionary of atoms. These atoms represent the spectro-temporal receptive fields of the auditory cortical neurons, and are calculated from the auditory spectrograms of clean signal and noise. The denoising is carried out on noisy signals by the reconstruction of the signal discarding the atoms corresponding to the noise. Experiments are presented using synthetic (chirps) and real data (speech), in the presence of additive noise. For the evaluation of the new method and its variants, we used two objective measures: the perceptual evaluation of speech quality and the segmental signal-to-noise ratio. Results show that the proposed method improves the quality of the signals, mainly under severe degradation.
publishDate 2015
dc.date.none.fl_str_mv 2015-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/40076
Martínez, César Ernesto; Goddard, J.; Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Denoising sound signals in a bioinspired non-negative spectro-temporal domain; Academic Press Inc Elsevier Science; Digital Signal Processing; 38; 3; 3-2015; 22-31
1051-2004
CONICET Digital
CONICET
url http://hdl.handle.net/11336/40076
identifier_str_mv Martínez, César Ernesto; Goddard, J.; Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Denoising sound signals in a bioinspired non-negative spectro-temporal domain; Academic Press Inc Elsevier Science; Digital Signal Processing; 38; 3; 3-2015; 22-31
1051-2004
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1051200414003509
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dsp.2014.12.008
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083537147527168
score 13.22299