Denoising sound signals in a bioinspired non-negative spectro-temporal domain
- Autores
- Martínez, César Ernesto; Goddard, J.; Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Rufiner, Hugo Leonardo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The representation of sound signals at the cochlea and auditory cortical level has been studied as an alternative to classical analysis methods. In this work, we put forward a recently proposed feature extraction method called approximate auditory cortical representation, based on an approximation to the statistics of discharge patterns at the primary auditory cortex. The approach here proposed estimates a non-negative sparse coding with a combined dictionary of atoms. These atoms represent the spectro-temporal receptive fields of the auditory cortical neurons, and are calculated from the auditory spectrograms of clean signal and noise. The denoising is carried out on noisy signals by the reconstruction of the signal discarding the atoms corresponding to the noise. Experiments are presented using synthetic (chirps) and real data (speech), in the presence of additive noise. For the evaluation of the new method and its variants, we used two objective measures: the perceptual evaluation of speech quality and the segmental signal-to-noise ratio. Results show that the proposed method improves the quality of the signals, mainly under severe degradation.
Fil: Martínez, César Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Goddard, J.. Universidad Autónoma Metropolitana; México
Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina - Materia
-
Approximate Auditory Cortical Representation
Sound Denoising
Non-Negative Sparse Coding
Bioinspired Signal Processing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/40076
Ver los metadatos del registro completo
id |
CONICETDig_997fe808c0f77a2267119e96124927fd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/40076 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Denoising sound signals in a bioinspired non-negative spectro-temporal domainMartínez, César ErnestoGoddard, J.Di Persia, Leandro EzequielMilone, Diego HumbertoRufiner, Hugo LeonardoApproximate Auditory Cortical RepresentationSound DenoisingNon-Negative Sparse CodingBioinspired Signal Processinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The representation of sound signals at the cochlea and auditory cortical level has been studied as an alternative to classical analysis methods. In this work, we put forward a recently proposed feature extraction method called approximate auditory cortical representation, based on an approximation to the statistics of discharge patterns at the primary auditory cortex. The approach here proposed estimates a non-negative sparse coding with a combined dictionary of atoms. These atoms represent the spectro-temporal receptive fields of the auditory cortical neurons, and are calculated from the auditory spectrograms of clean signal and noise. The denoising is carried out on noisy signals by the reconstruction of the signal discarding the atoms corresponding to the noise. Experiments are presented using synthetic (chirps) and real data (speech), in the presence of additive noise. For the evaluation of the new method and its variants, we used two objective measures: the perceptual evaluation of speech quality and the segmental signal-to-noise ratio. Results show that the proposed method improves the quality of the signals, mainly under severe degradation.Fil: Martínez, César Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Goddard, J.. Universidad Autónoma Metropolitana; MéxicoFil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; ArgentinaAcademic Press Inc Elsevier Science2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/40076Martínez, César Ernesto; Goddard, J.; Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Denoising sound signals in a bioinspired non-negative spectro-temporal domain; Academic Press Inc Elsevier Science; Digital Signal Processing; 38; 3; 3-2015; 22-311051-2004CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1051200414003509info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dsp.2014.12.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:43:04Zoai:ri.conicet.gov.ar:11336/40076instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:43:04.574CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Denoising sound signals in a bioinspired non-negative spectro-temporal domain |
title |
Denoising sound signals in a bioinspired non-negative spectro-temporal domain |
spellingShingle |
Denoising sound signals in a bioinspired non-negative spectro-temporal domain Martínez, César Ernesto Approximate Auditory Cortical Representation Sound Denoising Non-Negative Sparse Coding Bioinspired Signal Processing |
title_short |
Denoising sound signals in a bioinspired non-negative spectro-temporal domain |
title_full |
Denoising sound signals in a bioinspired non-negative spectro-temporal domain |
title_fullStr |
Denoising sound signals in a bioinspired non-negative spectro-temporal domain |
title_full_unstemmed |
Denoising sound signals in a bioinspired non-negative spectro-temporal domain |
title_sort |
Denoising sound signals in a bioinspired non-negative spectro-temporal domain |
dc.creator.none.fl_str_mv |
Martínez, César Ernesto Goddard, J. Di Persia, Leandro Ezequiel Milone, Diego Humberto Rufiner, Hugo Leonardo |
author |
Martínez, César Ernesto |
author_facet |
Martínez, César Ernesto Goddard, J. Di Persia, Leandro Ezequiel Milone, Diego Humberto Rufiner, Hugo Leonardo |
author_role |
author |
author2 |
Goddard, J. Di Persia, Leandro Ezequiel Milone, Diego Humberto Rufiner, Hugo Leonardo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Approximate Auditory Cortical Representation Sound Denoising Non-Negative Sparse Coding Bioinspired Signal Processing |
topic |
Approximate Auditory Cortical Representation Sound Denoising Non-Negative Sparse Coding Bioinspired Signal Processing |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The representation of sound signals at the cochlea and auditory cortical level has been studied as an alternative to classical analysis methods. In this work, we put forward a recently proposed feature extraction method called approximate auditory cortical representation, based on an approximation to the statistics of discharge patterns at the primary auditory cortex. The approach here proposed estimates a non-negative sparse coding with a combined dictionary of atoms. These atoms represent the spectro-temporal receptive fields of the auditory cortical neurons, and are calculated from the auditory spectrograms of clean signal and noise. The denoising is carried out on noisy signals by the reconstruction of the signal discarding the atoms corresponding to the noise. Experiments are presented using synthetic (chirps) and real data (speech), in the presence of additive noise. For the evaluation of the new method and its variants, we used two objective measures: the perceptual evaluation of speech quality and the segmental signal-to-noise ratio. Results show that the proposed method improves the quality of the signals, mainly under severe degradation. Fil: Martínez, César Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Goddard, J.. Universidad Autónoma Metropolitana; México Fil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; Argentina |
description |
The representation of sound signals at the cochlea and auditory cortical level has been studied as an alternative to classical analysis methods. In this work, we put forward a recently proposed feature extraction method called approximate auditory cortical representation, based on an approximation to the statistics of discharge patterns at the primary auditory cortex. The approach here proposed estimates a non-negative sparse coding with a combined dictionary of atoms. These atoms represent the spectro-temporal receptive fields of the auditory cortical neurons, and are calculated from the auditory spectrograms of clean signal and noise. The denoising is carried out on noisy signals by the reconstruction of the signal discarding the atoms corresponding to the noise. Experiments are presented using synthetic (chirps) and real data (speech), in the presence of additive noise. For the evaluation of the new method and its variants, we used two objective measures: the perceptual evaluation of speech quality and the segmental signal-to-noise ratio. Results show that the proposed method improves the quality of the signals, mainly under severe degradation. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/40076 Martínez, César Ernesto; Goddard, J.; Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Denoising sound signals in a bioinspired non-negative spectro-temporal domain; Academic Press Inc Elsevier Science; Digital Signal Processing; 38; 3; 3-2015; 22-31 1051-2004 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/40076 |
identifier_str_mv |
Martínez, César Ernesto; Goddard, J.; Di Persia, Leandro Ezequiel; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Denoising sound signals in a bioinspired non-negative spectro-temporal domain; Academic Press Inc Elsevier Science; Digital Signal Processing; 38; 3; 3-2015; 22-31 1051-2004 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1051200414003509 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dsp.2014.12.008 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083537147527168 |
score |
13.22299 |