Graph representations for reinforcement learning
- Autores
- Schab, Esteban; Casanova, Carlos; Piccoli, Fabiana
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Graph analysis is becoming increasingly important due to the expressive power of graph models and the efficient algorithms available for processing them. Reinforcement Learning is one domain that could benefit from advancements in graph analysis, given that a learning agent may be integrated into an environment that can be represented as a graph. Nevertheless, the structural irregularity of graphs and the lack of prior labels make it difficult to integrate such a model into modern Reinforcement Learning frameworks that rely on artificial neural networks. Graph embedding enables the learning of low-dimensional vector representations that are more suited for machine learning algorithms, while retaining essential graph features. This paper presents a framework for evaluating graph embedding algorithms and their ability to preserve the structure and relevant features of graphs by means of an internal validation metric, without resorting to subsequent tasks that require labels for training. Based on this framework, three defined algorithms that meet the necessary requirements for solving a specific problem of Reinforcement Learning in graphs are selected, analyzed, and compared. These algorithms are Graph2Vec, GL2Vec, and Wavelet Characteristics, with the latter two demonstrating superior performance.
El análisis de grafos es un tópico emergente debido a la expresividad de los modelos basados en grafos y al desarrollo de algoritmos para su procesamiento. Un área que puede beneficiarse de estos avances es el aprendizaje por refuerzo, dado que un agente de aprendizaje puede estar imnerso en un entorno modelable como un grafo. Sin embargo, tanto la irregularidad de las características estructurales de los grafos como la ausencia de etiquetas a priori dificultan la incorporación de un modelo de este tipo en los marcos modernos de Aprendizaje por Refuerzo basados en redes neuronales artificiales. En este sentido, los embeddings de grafos permiten aprender representaciones vectoriales de baja dimensión, más adecuadas para los algoritmos de aprendizaje automático, preservando al mismo tiempo las características clave de los grafos. Proponemos un marco para evaluar algoritmos de Graph Embedding y su capacidad para preservar la estructura y características relevantes de los grafos mediante una métrica de validación interna, sin recurrir a tareas posteriores que requieran etiquetas para el entrenamiento. Aplicando este marco con un problema concreto, se seleccionan, analizan y comparan tres algoritmos que cumplen los requisitos necesarios: Graph2Vec, GL2Vec y Wavelet Characteristics, donde los dos últimos muestran un mejor comportamiento.
Facultad de Informática - Materia
-
Ciencias Informáticas
Computational Intelligence
Reinforcement Learning
Graph Embeddings
unsupervised GRL
Whole Graph Embedding
Inteligencia Computacional
Aprendizaje por Refuerzo
Embeddings de grafos
GRL no supervisado
Embedding de grafo entero - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/166757
Ver los metadatos del registro completo
id |
SEDICI_a6df07481aa332b4d378761080a49bbb |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/166757 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Graph representations for reinforcement learningRepresentaciones de grafos para aprendizaje por refuerzoSchab, EstebanCasanova, CarlosPiccoli, FabianaCiencias InformáticasComputational IntelligenceReinforcement LearningGraph Embeddingsunsupervised GRLWhole Graph EmbeddingInteligencia ComputacionalAprendizaje por RefuerzoEmbeddings de grafosGRL no supervisadoEmbedding de grafo enteroGraph analysis is becoming increasingly important due to the expressive power of graph models and the efficient algorithms available for processing them. Reinforcement Learning is one domain that could benefit from advancements in graph analysis, given that a learning agent may be integrated into an environment that can be represented as a graph. Nevertheless, the structural irregularity of graphs and the lack of prior labels make it difficult to integrate such a model into modern Reinforcement Learning frameworks that rely on artificial neural networks. Graph embedding enables the learning of low-dimensional vector representations that are more suited for machine learning algorithms, while retaining essential graph features. This paper presents a framework for evaluating graph embedding algorithms and their ability to preserve the structure and relevant features of graphs by means of an internal validation metric, without resorting to subsequent tasks that require labels for training. Based on this framework, three defined algorithms that meet the necessary requirements for solving a specific problem of Reinforcement Learning in graphs are selected, analyzed, and compared. These algorithms are Graph2Vec, GL2Vec, and Wavelet Characteristics, with the latter two demonstrating superior performance.El análisis de grafos es un tópico emergente debido a la expresividad de los modelos basados en grafos y al desarrollo de algoritmos para su procesamiento. Un área que puede beneficiarse de estos avances es el aprendizaje por refuerzo, dado que un agente de aprendizaje puede estar imnerso en un entorno modelable como un grafo. Sin embargo, tanto la irregularidad de las características estructurales de los grafos como la ausencia de etiquetas a priori dificultan la incorporación de un modelo de este tipo en los marcos modernos de Aprendizaje por Refuerzo basados en redes neuronales artificiales. En este sentido, los embeddings de grafos permiten aprender representaciones vectoriales de baja dimensión, más adecuadas para los algoritmos de aprendizaje automático, preservando al mismo tiempo las características clave de los grafos. Proponemos un marco para evaluar algoritmos de Graph Embedding y su capacidad para preservar la estructura y características relevantes de los grafos mediante una métrica de validación interna, sin recurrir a tareas posteriores que requieran etiquetas para el entrenamiento. Aplicando este marco con un problema concreto, se seleccionan, analizan y comparan tres algoritmos que cumplen los requisitos necesarios: Graph2Vec, GL2Vec y Wavelet Characteristics, donde los dos últimos muestran un mejor comportamiento.Facultad de Informática2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf29-38http://sedici.unlp.edu.ar/handle/10915/166757enginfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.24.e03info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:36:11Zoai:sedici.unlp.edu.ar:10915/166757Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:36:11.752SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Graph representations for reinforcement learning Representaciones de grafos para aprendizaje por refuerzo |
title |
Graph representations for reinforcement learning |
spellingShingle |
Graph representations for reinforcement learning Schab, Esteban Ciencias Informáticas Computational Intelligence Reinforcement Learning Graph Embeddings unsupervised GRL Whole Graph Embedding Inteligencia Computacional Aprendizaje por Refuerzo Embeddings de grafos GRL no supervisado Embedding de grafo entero |
title_short |
Graph representations for reinforcement learning |
title_full |
Graph representations for reinforcement learning |
title_fullStr |
Graph representations for reinforcement learning |
title_full_unstemmed |
Graph representations for reinforcement learning |
title_sort |
Graph representations for reinforcement learning |
dc.creator.none.fl_str_mv |
Schab, Esteban Casanova, Carlos Piccoli, Fabiana |
author |
Schab, Esteban |
author_facet |
Schab, Esteban Casanova, Carlos Piccoli, Fabiana |
author_role |
author |
author2 |
Casanova, Carlos Piccoli, Fabiana |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Computational Intelligence Reinforcement Learning Graph Embeddings unsupervised GRL Whole Graph Embedding Inteligencia Computacional Aprendizaje por Refuerzo Embeddings de grafos GRL no supervisado Embedding de grafo entero |
topic |
Ciencias Informáticas Computational Intelligence Reinforcement Learning Graph Embeddings unsupervised GRL Whole Graph Embedding Inteligencia Computacional Aprendizaje por Refuerzo Embeddings de grafos GRL no supervisado Embedding de grafo entero |
dc.description.none.fl_txt_mv |
Graph analysis is becoming increasingly important due to the expressive power of graph models and the efficient algorithms available for processing them. Reinforcement Learning is one domain that could benefit from advancements in graph analysis, given that a learning agent may be integrated into an environment that can be represented as a graph. Nevertheless, the structural irregularity of graphs and the lack of prior labels make it difficult to integrate such a model into modern Reinforcement Learning frameworks that rely on artificial neural networks. Graph embedding enables the learning of low-dimensional vector representations that are more suited for machine learning algorithms, while retaining essential graph features. This paper presents a framework for evaluating graph embedding algorithms and their ability to preserve the structure and relevant features of graphs by means of an internal validation metric, without resorting to subsequent tasks that require labels for training. Based on this framework, three defined algorithms that meet the necessary requirements for solving a specific problem of Reinforcement Learning in graphs are selected, analyzed, and compared. These algorithms are Graph2Vec, GL2Vec, and Wavelet Characteristics, with the latter two demonstrating superior performance. El análisis de grafos es un tópico emergente debido a la expresividad de los modelos basados en grafos y al desarrollo de algoritmos para su procesamiento. Un área que puede beneficiarse de estos avances es el aprendizaje por refuerzo, dado que un agente de aprendizaje puede estar imnerso en un entorno modelable como un grafo. Sin embargo, tanto la irregularidad de las características estructurales de los grafos como la ausencia de etiquetas a priori dificultan la incorporación de un modelo de este tipo en los marcos modernos de Aprendizaje por Refuerzo basados en redes neuronales artificiales. En este sentido, los embeddings de grafos permiten aprender representaciones vectoriales de baja dimensión, más adecuadas para los algoritmos de aprendizaje automático, preservando al mismo tiempo las características clave de los grafos. Proponemos un marco para evaluar algoritmos de Graph Embedding y su capacidad para preservar la estructura y características relevantes de los grafos mediante una métrica de validación interna, sin recurrir a tareas posteriores que requieran etiquetas para el entrenamiento. Aplicando este marco con un problema concreto, se seleccionan, analizan y comparan tres algoritmos que cumplen los requisitos necesarios: Graph2Vec, GL2Vec y Wavelet Characteristics, donde los dos últimos muestran un mejor comportamiento. Facultad de Informática |
description |
Graph analysis is becoming increasingly important due to the expressive power of graph models and the efficient algorithms available for processing them. Reinforcement Learning is one domain that could benefit from advancements in graph analysis, given that a learning agent may be integrated into an environment that can be represented as a graph. Nevertheless, the structural irregularity of graphs and the lack of prior labels make it difficult to integrate such a model into modern Reinforcement Learning frameworks that rely on artificial neural networks. Graph embedding enables the learning of low-dimensional vector representations that are more suited for machine learning algorithms, while retaining essential graph features. This paper presents a framework for evaluating graph embedding algorithms and their ability to preserve the structure and relevant features of graphs by means of an internal validation metric, without resorting to subsequent tasks that require labels for training. Based on this framework, three defined algorithms that meet the necessary requirements for solving a specific problem of Reinforcement Learning in graphs are selected, analyzed, and compared. These algorithms are Graph2Vec, GL2Vec, and Wavelet Characteristics, with the latter two demonstrating superior performance. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/166757 |
url |
http://sedici.unlp.edu.ar/handle/10915/166757 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1666-6038 info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.24.e03 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 29-38 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064385231945728 |
score |
13.22299 |