Modelo prescriptivo dinámico para un sistema de eventos complejo

Autores
Schab, Esteban; Casanova, Carlos; Piccoli, María Fabiana
Año de publicación
2021
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La toma de decisiones en contextos dominados por grandes volúmenes de datos debe conjugar dos atributos usualmente contrapuestos: calidad y velocidad. La disponibilidad de información generada por personas y dispositivos abre nuevos desafíos en el diseño de mecanismos que puedan aprovecharla, de tal manera de que sean capaces de determinar las decisiones de mayor utilidad sujetas a ventanas temporales que garanticen su factibilidad. Uno de estos mecanismos lo constituyen las analíticas en sus distintos tipos, las cuales buscan transformar los datos en información a través de técnicas diversas. En este trabajo proponemos una línea de investigación enfocada en la analítica prescriptiva, capaz de determinar acciones a ser ejecutadas en el momento (decisiones operativas) o en el futuro (decisiones tácticas para corto y mediano plazo, decisiones estratégicas para largo plazo) para lograr un objetivo deseado. Para componerlas se propone la utilización de desarrollos provenientes de la Inteligencia Computacional y de la Computación de Alto Desempeño con el fin de obtener, de forma colaborativa, calidad y velocidad en las decisiones.
Eje: Agentes y sistemas inteligentes.
Red de Universidades con Carreras en Informática
Materia
Ciencias Informáticas
Inteligencia Computacional
Analíticas
Big Data
Computación de Alto Desempeño
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/119951

id SEDICI_a5aa657734712518917328ce6e40ddd0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/119951
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Modelo prescriptivo dinámico para un sistema de eventos complejoSchab, EstebanCasanova, CarlosPiccoli, María FabianaCiencias InformáticasInteligencia ComputacionalAnalíticasBig DataComputación de Alto DesempeñoLa toma de decisiones en contextos dominados por grandes volúmenes de datos debe conjugar dos atributos usualmente contrapuestos: calidad y velocidad. La disponibilidad de información generada por personas y dispositivos abre nuevos desafíos en el diseño de mecanismos que puedan aprovecharla, de tal manera de que sean capaces de determinar las decisiones de mayor utilidad sujetas a ventanas temporales que garanticen su factibilidad. Uno de estos mecanismos lo constituyen las analíticas en sus distintos tipos, las cuales buscan transformar los datos en información a través de técnicas diversas. En este trabajo proponemos una línea de investigación enfocada en la analítica prescriptiva, capaz de determinar acciones a ser ejecutadas en el momento (decisiones operativas) o en el futuro (decisiones tácticas para corto y mediano plazo, decisiones estratégicas para largo plazo) para lograr un objetivo deseado. Para componerlas se propone la utilización de desarrollos provenientes de la Inteligencia Computacional y de la Computación de Alto Desempeño con el fin de obtener, de forma colaborativa, calidad y velocidad en las decisiones.Eje: Agentes y sistemas inteligentes.Red de Universidades con Carreras en Informática2021-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf129-133http://sedici.unlp.edu.ar/handle/10915/119951spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-24611-3-3info:eu-repo/semantics/altIdentifier/isbn/978-987-24611-4-0info:eu-repo/semantics/reference/hdl/10915/119487info:eu-repo/semantics/reference/hdl/10915/119490info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:20:13Zoai:sedici.unlp.edu.ar:10915/119951Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:20:14.047SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Modelo prescriptivo dinámico para un sistema de eventos complejo
title Modelo prescriptivo dinámico para un sistema de eventos complejo
spellingShingle Modelo prescriptivo dinámico para un sistema de eventos complejo
Schab, Esteban
Ciencias Informáticas
Inteligencia Computacional
Analíticas
Big Data
Computación de Alto Desempeño
title_short Modelo prescriptivo dinámico para un sistema de eventos complejo
title_full Modelo prescriptivo dinámico para un sistema de eventos complejo
title_fullStr Modelo prescriptivo dinámico para un sistema de eventos complejo
title_full_unstemmed Modelo prescriptivo dinámico para un sistema de eventos complejo
title_sort Modelo prescriptivo dinámico para un sistema de eventos complejo
dc.creator.none.fl_str_mv Schab, Esteban
Casanova, Carlos
Piccoli, María Fabiana
author Schab, Esteban
author_facet Schab, Esteban
Casanova, Carlos
Piccoli, María Fabiana
author_role author
author2 Casanova, Carlos
Piccoli, María Fabiana
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Inteligencia Computacional
Analíticas
Big Data
Computación de Alto Desempeño
topic Ciencias Informáticas
Inteligencia Computacional
Analíticas
Big Data
Computación de Alto Desempeño
dc.description.none.fl_txt_mv La toma de decisiones en contextos dominados por grandes volúmenes de datos debe conjugar dos atributos usualmente contrapuestos: calidad y velocidad. La disponibilidad de información generada por personas y dispositivos abre nuevos desafíos en el diseño de mecanismos que puedan aprovecharla, de tal manera de que sean capaces de determinar las decisiones de mayor utilidad sujetas a ventanas temporales que garanticen su factibilidad. Uno de estos mecanismos lo constituyen las analíticas en sus distintos tipos, las cuales buscan transformar los datos en información a través de técnicas diversas. En este trabajo proponemos una línea de investigación enfocada en la analítica prescriptiva, capaz de determinar acciones a ser ejecutadas en el momento (decisiones operativas) o en el futuro (decisiones tácticas para corto y mediano plazo, decisiones estratégicas para largo plazo) para lograr un objetivo deseado. Para componerlas se propone la utilización de desarrollos provenientes de la Inteligencia Computacional y de la Computación de Alto Desempeño con el fin de obtener, de forma colaborativa, calidad y velocidad en las decisiones.
Eje: Agentes y sistemas inteligentes.
Red de Universidades con Carreras en Informática
description La toma de decisiones en contextos dominados por grandes volúmenes de datos debe conjugar dos atributos usualmente contrapuestos: calidad y velocidad. La disponibilidad de información generada por personas y dispositivos abre nuevos desafíos en el diseño de mecanismos que puedan aprovecharla, de tal manera de que sean capaces de determinar las decisiones de mayor utilidad sujetas a ventanas temporales que garanticen su factibilidad. Uno de estos mecanismos lo constituyen las analíticas en sus distintos tipos, las cuales buscan transformar los datos en información a través de técnicas diversas. En este trabajo proponemos una línea de investigación enfocada en la analítica prescriptiva, capaz de determinar acciones a ser ejecutadas en el momento (decisiones operativas) o en el futuro (decisiones tácticas para corto y mediano plazo, decisiones estratégicas para largo plazo) para lograr un objetivo deseado. Para componerlas se propone la utilización de desarrollos provenientes de la Inteligencia Computacional y de la Computación de Alto Desempeño con el fin de obtener, de forma colaborativa, calidad y velocidad en las decisiones.
publishDate 2021
dc.date.none.fl_str_mv 2021-04
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/119951
url http://sedici.unlp.edu.ar/handle/10915/119951
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-24611-3-3
info:eu-repo/semantics/altIdentifier/isbn/978-987-24611-4-0
info:eu-repo/semantics/reference/hdl/10915/119487
info:eu-repo/semantics/reference/hdl/10915/119490
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
129-133
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064259311599616
score 13.22299