Weighted convolution inequalities for radial functions

Autores
De Nápoli, Pablo Luis; Drelichman, Irene
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We obtain convolution inequalities in Lebesgue and Lorentz spaces with power weights when the functions involved are assumed to be radially symmetric. We also present applications of these results to inequalities for Riesz potentials of radial functions in weighted Lorentz spaces and embedding theorems for radial Besov spaces with power weights.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Matemática
Convolution
Young’s inequality
Radial functions
Riesz potentials
Fractional integrals
Weighted Besov spaces
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/103166

id SEDICI_a54c304f583e318b67e1486f335a0bf4
oai_identifier_str oai:sedici.unlp.edu.ar:10915/103166
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Weighted convolution inequalities for radial functionsDe Nápoli, Pablo LuisDrelichman, IreneCiencias ExactasMatemáticaConvolutionYoung’s inequalityRadial functionsRiesz potentialsFractional integralsWeighted Besov spacesWe obtain convolution inequalities in Lebesgue and Lorentz spaces with power weights when the functions involved are assumed to be radially symmetric. We also present applications of these results to inequalities for Riesz potentials of radial functions in weighted Lorentz spaces and embedding theorems for radial Besov spaces with power weights.Facultad de Ciencias Exactas2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf167-181http://sedici.unlp.edu.ar/handle/10915/103166enginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-013-0370-6info:eu-repo/semantics/altIdentifier/issn/1618-1891info:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-013-0370-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:14:15Zoai:sedici.unlp.edu.ar:10915/103166Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:14:16.065SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Weighted convolution inequalities for radial functions
title Weighted convolution inequalities for radial functions
spellingShingle Weighted convolution inequalities for radial functions
De Nápoli, Pablo Luis
Ciencias Exactas
Matemática
Convolution
Young’s inequality
Radial functions
Riesz potentials
Fractional integrals
Weighted Besov spaces
title_short Weighted convolution inequalities for radial functions
title_full Weighted convolution inequalities for radial functions
title_fullStr Weighted convolution inequalities for radial functions
title_full_unstemmed Weighted convolution inequalities for radial functions
title_sort Weighted convolution inequalities for radial functions
dc.creator.none.fl_str_mv De Nápoli, Pablo Luis
Drelichman, Irene
author De Nápoli, Pablo Luis
author_facet De Nápoli, Pablo Luis
Drelichman, Irene
author_role author
author2 Drelichman, Irene
author2_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Matemática
Convolution
Young’s inequality
Radial functions
Riesz potentials
Fractional integrals
Weighted Besov spaces
topic Ciencias Exactas
Matemática
Convolution
Young’s inequality
Radial functions
Riesz potentials
Fractional integrals
Weighted Besov spaces
dc.description.none.fl_txt_mv We obtain convolution inequalities in Lebesgue and Lorentz spaces with power weights when the functions involved are assumed to be radially symmetric. We also present applications of these results to inequalities for Riesz potentials of radial functions in weighted Lorentz spaces and embedding theorems for radial Besov spaces with power weights.
Facultad de Ciencias Exactas
description We obtain convolution inequalities in Lebesgue and Lorentz spaces with power weights when the functions involved are assumed to be radially symmetric. We also present applications of these results to inequalities for Riesz potentials of radial functions in weighted Lorentz spaces and embedding theorems for radial Besov spaces with power weights.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/103166
url http://sedici.unlp.edu.ar/handle/10915/103166
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-013-0370-6
info:eu-repo/semantics/altIdentifier/issn/1618-1891
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-013-0370-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
167-181
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064200567226368
score 13.22299