Procedure to Improve the Accuracy of Dental Implant Failures by Data Science Techniques

Autores
Ganz, Nancy; Ares, Alicia E.; Kuna, Horacio Daniel
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nowadays, the prediction about dental implant failure is determined through clinical and radiological evaluation. For this reason, predictions are highly dependent on the Implantologists’ experience. In addition, it is extremely crucial to detect in time if a dental implant is going to fail, due to time, cost, trauma to the patient, postoperative problems, among others. This paper proposes a procedure using multiple feature selection methods and classification algorithms to improve the accuracy of dental implant failures in the province of Misiones, Argentina, validated by human experts. The experimentation is performed with two data sets, a set of dental implants made for the case study and an artificially generated set. The proposed approach allows to know the most relevant features and improve the accuracy in the classification of the target class (dental implant failure), to avoid biasing the decision making based on the application and results of individual methods. The proposed approach achieves an accuracy of 79% of failures, while individual classifiers achieve a maximum of 72%.
Hoy en día, la predicción del fracaso de un implante dental está determinado a través de una evaluación clínica y radiológica. Por esta razón, las predicciones dependen en gran medida de la experiencia del implantólogo. Además, es extremadamente crucial detectar a tiempo si un implante dental va a fallar, por cuestiones de tiempo, costo, traumas al paciente. problemas postoperatorios, entre otros. En este trabajo se propone un procedimiento mediante la utilización de múltiples métodos de selección de características y algoritmos de clasificación, para mejorar la precisión en el acierto de los fracasos en implantes dentales de la provincia de Misiones, Argentina validado por expertos humanos. La experimentación es realizada con cuatro conjuntos de datos, un conjunto de implantes dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y otros dos conjuntos obtenidos de distintos repositorios de datos. El procedimiento propuesto permitió conocer las características más relevantes y mejoró la precisión en la clasificación de la clase objetivo (fracaso del implante dental), permitiendo no sesgar la toma de decisión en base a la aplicación y resultados de método individuales. El procedimiento propuesto consigue una precisión del 79% de los fracasos, mientras que los clasificadores individuales alcanzan un máximo del 72%.
Facultad de Informática
Materia
Ciencias Informáticas
Feature selection
Classifier
Ensemble
Failure
Dental implants
Selección de características
Clasificación
Integración
Implantes Dentales
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/128264

id SEDICI_a47fd1b674cbb0ddb900d6387d987a82
oai_identifier_str oai:sedici.unlp.edu.ar:10915/128264
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Procedure to Improve the Accuracy of Dental Implant Failures by Data Science TechniquesProcedimiento para mejorar la precisión en el acierto de los fracasos en implantes dentales mediante técnicas de ciencia de datosGanz, NancyAres, Alicia E.Kuna, Horacio DanielCiencias InformáticasFeature selectionClassifierEnsembleFailureDental implantsSelección de característicasClasificaciónIntegraciónImplantes DentalesNowadays, the prediction about dental implant failure is determined through clinical and radiological evaluation. For this reason, predictions are highly dependent on the Implantologists’ experience. In addition, it is extremely crucial to detect in time if a dental implant is going to fail, due to time, cost, trauma to the patient, postoperative problems, among others. This paper proposes a procedure using multiple feature selection methods and classification algorithms to improve the accuracy of dental implant failures in the province of Misiones, Argentina, validated by human experts. The experimentation is performed with two data sets, a set of dental implants made for the case study and an artificially generated set. The proposed approach allows to know the most relevant features and improve the accuracy in the classification of the target class (dental implant failure), to avoid biasing the decision making based on the application and results of individual methods. The proposed approach achieves an accuracy of 79% of failures, while individual classifiers achieve a maximum of 72%.Hoy en día, la predicción del fracaso de un implante dental está determinado a través de una evaluación clínica y radiológica. Por esta razón, las predicciones dependen en gran medida de la experiencia del implantólogo. Además, es extremadamente crucial detectar a tiempo si un implante dental va a fallar, por cuestiones de tiempo, costo, traumas al paciente. problemas postoperatorios, entre otros. En este trabajo se propone un procedimiento mediante la utilización de múltiples métodos de selección de características y algoritmos de clasificación, para mejorar la precisión en el acierto de los fracasos en implantes dentales de la provincia de Misiones, Argentina validado por expertos humanos. La experimentación es realizada con cuatro conjuntos de datos, un conjunto de implantes dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y otros dos conjuntos obtenidos de distintos repositorios de datos. El procedimiento propuesto permitió conocer las características más relevantes y mejoró la precisión en la clasificación de la clase objetivo (fracaso del implante dental), permitiendo no sesgar la toma de decisión en base a la aplicación y resultados de método individuales. El procedimiento propuesto consigue una precisión del 79% de los fracasos, mientras que los clasificadores individuales alcanzan un máximo del 72%.Facultad de Informática2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf146-156http://sedici.unlp.edu.ar/handle/10915/128264enginfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.21.e13info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:12Zoai:sedici.unlp.edu.ar:10915/128264Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:13.047SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Procedure to Improve the Accuracy of Dental Implant Failures by Data Science Techniques
Procedimiento para mejorar la precisión en el acierto de los fracasos en implantes dentales mediante técnicas de ciencia de datos
title Procedure to Improve the Accuracy of Dental Implant Failures by Data Science Techniques
spellingShingle Procedure to Improve the Accuracy of Dental Implant Failures by Data Science Techniques
Ganz, Nancy
Ciencias Informáticas
Feature selection
Classifier
Ensemble
Failure
Dental implants
Selección de características
Clasificación
Integración
Implantes Dentales
title_short Procedure to Improve the Accuracy of Dental Implant Failures by Data Science Techniques
title_full Procedure to Improve the Accuracy of Dental Implant Failures by Data Science Techniques
title_fullStr Procedure to Improve the Accuracy of Dental Implant Failures by Data Science Techniques
title_full_unstemmed Procedure to Improve the Accuracy of Dental Implant Failures by Data Science Techniques
title_sort Procedure to Improve the Accuracy of Dental Implant Failures by Data Science Techniques
dc.creator.none.fl_str_mv Ganz, Nancy
Ares, Alicia E.
Kuna, Horacio Daniel
author Ganz, Nancy
author_facet Ganz, Nancy
Ares, Alicia E.
Kuna, Horacio Daniel
author_role author
author2 Ares, Alicia E.
Kuna, Horacio Daniel
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Feature selection
Classifier
Ensemble
Failure
Dental implants
Selección de características
Clasificación
Integración
Implantes Dentales
topic Ciencias Informáticas
Feature selection
Classifier
Ensemble
Failure
Dental implants
Selección de características
Clasificación
Integración
Implantes Dentales
dc.description.none.fl_txt_mv Nowadays, the prediction about dental implant failure is determined through clinical and radiological evaluation. For this reason, predictions are highly dependent on the Implantologists’ experience. In addition, it is extremely crucial to detect in time if a dental implant is going to fail, due to time, cost, trauma to the patient, postoperative problems, among others. This paper proposes a procedure using multiple feature selection methods and classification algorithms to improve the accuracy of dental implant failures in the province of Misiones, Argentina, validated by human experts. The experimentation is performed with two data sets, a set of dental implants made for the case study and an artificially generated set. The proposed approach allows to know the most relevant features and improve the accuracy in the classification of the target class (dental implant failure), to avoid biasing the decision making based on the application and results of individual methods. The proposed approach achieves an accuracy of 79% of failures, while individual classifiers achieve a maximum of 72%.
Hoy en día, la predicción del fracaso de un implante dental está determinado a través de una evaluación clínica y radiológica. Por esta razón, las predicciones dependen en gran medida de la experiencia del implantólogo. Además, es extremadamente crucial detectar a tiempo si un implante dental va a fallar, por cuestiones de tiempo, costo, traumas al paciente. problemas postoperatorios, entre otros. En este trabajo se propone un procedimiento mediante la utilización de múltiples métodos de selección de características y algoritmos de clasificación, para mejorar la precisión en el acierto de los fracasos en implantes dentales de la provincia de Misiones, Argentina validado por expertos humanos. La experimentación es realizada con cuatro conjuntos de datos, un conjunto de implantes dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y otros dos conjuntos obtenidos de distintos repositorios de datos. El procedimiento propuesto permitió conocer las características más relevantes y mejoró la precisión en la clasificación de la clase objetivo (fracaso del implante dental), permitiendo no sesgar la toma de decisión en base a la aplicación y resultados de método individuales. El procedimiento propuesto consigue una precisión del 79% de los fracasos, mientras que los clasificadores individuales alcanzan un máximo del 72%.
Facultad de Informática
description Nowadays, the prediction about dental implant failure is determined through clinical and radiological evaluation. For this reason, predictions are highly dependent on the Implantologists’ experience. In addition, it is extremely crucial to detect in time if a dental implant is going to fail, due to time, cost, trauma to the patient, postoperative problems, among others. This paper proposes a procedure using multiple feature selection methods and classification algorithms to improve the accuracy of dental implant failures in the province of Misiones, Argentina, validated by human experts. The experimentation is performed with two data sets, a set of dental implants made for the case study and an artificially generated set. The proposed approach allows to know the most relevant features and improve the accuracy in the classification of the target class (dental implant failure), to avoid biasing the decision making based on the application and results of individual methods. The proposed approach achieves an accuracy of 79% of failures, while individual classifiers achieve a maximum of 72%.
publishDate 2021
dc.date.none.fl_str_mv 2021-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/128264
url http://sedici.unlp.edu.ar/handle/10915/128264
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1666-6038
info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.21.e13
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.format.none.fl_str_mv application/pdf
146-156
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616192047710208
score 13.070432