Procedure to improve the accuracy of dental implant failures by data science techniques
- Autores
- Ganz, Nancy Beatriz; Ares, Alicia Esther; Kuna, Horacio Daniel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nowadays, the prediction about dental implant failure is determined through clinical and radiological evaluation. For this reason, predictions are highly dependent on the Implantologists’ experience. In addition, it is extremely crucial to detect in time if a dental implant is going to fail, due to time, cost, trauma to the patient, postoperative problems, among others. This paper proposes a procedure using multiple feature selection methods and classification algorithms to improve the accuracy of dental implant failures in the province of Misiones, Argentina, validated by human experts. The experimentation is performed with two data sets, a set of dental implants made for the case study and an artificially generated set. The proposed approach allows to know the most relevant features and improve the accuracy in the classification of the target class (dental implant failure), to avoid biasing the decision making based on the application and results of individual methods. The proposed approach achieves an accuracy of 79% of failures, while individual classifiers achieve a maximum of 72%.
Hoy en día, la predicción del fracaso de un implante dental está determinado a través de una evaluación clínica y radiológica. Por esta razón, las predicciones dependen en gran medida de la experiencia del implantólogo. Además, es extremadamente crucial detectar a tiempo si un implante dental va a fallar, por cuestiones de tiempo, costo, traumas al paciente, problemas postoperatorios, entre otros. En este trabajo se propone un procedimiento mediante la utilización de múltiples métodos de selección de características y algoritmos de clasificación, para mejorar la precisión en el acierto de los fracasos en implantes dentales de la provincia de Misiones, Argentina validado por expertos humanos. La experimentación es realizada con cuatro conjuntos de datos, un conjunto de implantes dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y otros dos conjuntos obtenidos de distintos repositorios de datos. El procedimiento propuesto permitió conocer las características más relevantes y mejoró la precisión en la clasificación de la clase objetivo (fracaso del implante dental), permitiendo no sesgar la toma de decisión en base a la aplicación y resultados de método individuales. El procedimiento propuesto consigue una precisión del 79% de los fracasos, mientras que los clasificadores individuales alcanzan un máximo del 72%.
Fil: Ganz, Nancy Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
Fil: Ares, Alicia Esther. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina
Fil: Kuna, Horacio Daniel. Universidad Nacional de Misiones; Argentina - Materia
-
FEATURE SELECTION
CLASSIFIER
ENSEMBLE
FAILURE
DENTAL IMPLANTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/178184
Ver los metadatos del registro completo
id |
CONICETDig_2acf5aa01c7135aeed084a8fb316aeb1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/178184 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Procedure to improve the accuracy of dental implant failures by data science techniquesProcedimiento para mejorar la precisión en el acierto de los fracasos en implantes dentales mediante técnicas de ciencia de datosGanz, Nancy BeatrizAres, Alicia EstherKuna, Horacio DanielFEATURE SELECTIONCLASSIFIERENSEMBLEFAILUREDENTAL IMPLANTShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Nowadays, the prediction about dental implant failure is determined through clinical and radiological evaluation. For this reason, predictions are highly dependent on the Implantologists’ experience. In addition, it is extremely crucial to detect in time if a dental implant is going to fail, due to time, cost, trauma to the patient, postoperative problems, among others. This paper proposes a procedure using multiple feature selection methods and classification algorithms to improve the accuracy of dental implant failures in the province of Misiones, Argentina, validated by human experts. The experimentation is performed with two data sets, a set of dental implants made for the case study and an artificially generated set. The proposed approach allows to know the most relevant features and improve the accuracy in the classification of the target class (dental implant failure), to avoid biasing the decision making based on the application and results of individual methods. The proposed approach achieves an accuracy of 79% of failures, while individual classifiers achieve a maximum of 72%.Hoy en día, la predicción del fracaso de un implante dental está determinado a través de una evaluación clínica y radiológica. Por esta razón, las predicciones dependen en gran medida de la experiencia del implantólogo. Además, es extremadamente crucial detectar a tiempo si un implante dental va a fallar, por cuestiones de tiempo, costo, traumas al paciente, problemas postoperatorios, entre otros. En este trabajo se propone un procedimiento mediante la utilización de múltiples métodos de selección de características y algoritmos de clasificación, para mejorar la precisión en el acierto de los fracasos en implantes dentales de la provincia de Misiones, Argentina validado por expertos humanos. La experimentación es realizada con cuatro conjuntos de datos, un conjunto de implantes dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y otros dos conjuntos obtenidos de distintos repositorios de datos. El procedimiento propuesto permitió conocer las características más relevantes y mejoró la precisión en la clasificación de la clase objetivo (fracaso del implante dental), permitiendo no sesgar la toma de decisión en base a la aplicación y resultados de método individuales. El procedimiento propuesto consigue una precisión del 79% de los fracasos, mientras que los clasificadores individuales alcanzan un máximo del 72%.Fil: Ganz, Nancy Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Ares, Alicia Esther. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; ArgentinaFil: Kuna, Horacio Daniel. Universidad Nacional de Misiones; ArgentinaUniversidad Nacional de La Plata. Facultad de Informatica2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/178184Ganz, Nancy Beatriz; Ares, Alicia Esther; Kuna, Horacio Daniel; Procedure to improve the accuracy of dental implant failures by data science techniques; Universidad Nacional de La Plata. Facultad de Informatica; Journal of Computer Science & Technology; 21; 2; 10-2021; 146-1561666-60461666-6038CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journal.info.unlp.edu.ar/JCST/article/view/1816info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.21.e13info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:47Zoai:ri.conicet.gov.ar:11336/178184instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:48.282CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Procedure to improve the accuracy of dental implant failures by data science techniques Procedimiento para mejorar la precisión en el acierto de los fracasos en implantes dentales mediante técnicas de ciencia de datos |
title |
Procedure to improve the accuracy of dental implant failures by data science techniques |
spellingShingle |
Procedure to improve the accuracy of dental implant failures by data science techniques Ganz, Nancy Beatriz FEATURE SELECTION CLASSIFIER ENSEMBLE FAILURE DENTAL IMPLANTS |
title_short |
Procedure to improve the accuracy of dental implant failures by data science techniques |
title_full |
Procedure to improve the accuracy of dental implant failures by data science techniques |
title_fullStr |
Procedure to improve the accuracy of dental implant failures by data science techniques |
title_full_unstemmed |
Procedure to improve the accuracy of dental implant failures by data science techniques |
title_sort |
Procedure to improve the accuracy of dental implant failures by data science techniques |
dc.creator.none.fl_str_mv |
Ganz, Nancy Beatriz Ares, Alicia Esther Kuna, Horacio Daniel |
author |
Ganz, Nancy Beatriz |
author_facet |
Ganz, Nancy Beatriz Ares, Alicia Esther Kuna, Horacio Daniel |
author_role |
author |
author2 |
Ares, Alicia Esther Kuna, Horacio Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FEATURE SELECTION CLASSIFIER ENSEMBLE FAILURE DENTAL IMPLANTS |
topic |
FEATURE SELECTION CLASSIFIER ENSEMBLE FAILURE DENTAL IMPLANTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Nowadays, the prediction about dental implant failure is determined through clinical and radiological evaluation. For this reason, predictions are highly dependent on the Implantologists’ experience. In addition, it is extremely crucial to detect in time if a dental implant is going to fail, due to time, cost, trauma to the patient, postoperative problems, among others. This paper proposes a procedure using multiple feature selection methods and classification algorithms to improve the accuracy of dental implant failures in the province of Misiones, Argentina, validated by human experts. The experimentation is performed with two data sets, a set of dental implants made for the case study and an artificially generated set. The proposed approach allows to know the most relevant features and improve the accuracy in the classification of the target class (dental implant failure), to avoid biasing the decision making based on the application and results of individual methods. The proposed approach achieves an accuracy of 79% of failures, while individual classifiers achieve a maximum of 72%. Hoy en día, la predicción del fracaso de un implante dental está determinado a través de una evaluación clínica y radiológica. Por esta razón, las predicciones dependen en gran medida de la experiencia del implantólogo. Además, es extremadamente crucial detectar a tiempo si un implante dental va a fallar, por cuestiones de tiempo, costo, traumas al paciente, problemas postoperatorios, entre otros. En este trabajo se propone un procedimiento mediante la utilización de múltiples métodos de selección de características y algoritmos de clasificación, para mejorar la precisión en el acierto de los fracasos en implantes dentales de la provincia de Misiones, Argentina validado por expertos humanos. La experimentación es realizada con cuatro conjuntos de datos, un conjunto de implantes dentales confeccionado para el estudio de caso, un conjunto generado artificialmente y otros dos conjuntos obtenidos de distintos repositorios de datos. El procedimiento propuesto permitió conocer las características más relevantes y mejoró la precisión en la clasificación de la clase objetivo (fracaso del implante dental), permitiendo no sesgar la toma de decisión en base a la aplicación y resultados de método individuales. El procedimiento propuesto consigue una precisión del 79% de los fracasos, mientras que los clasificadores individuales alcanzan un máximo del 72%. Fil: Ganz, Nancy Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina Fil: Ares, Alicia Esther. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Materiales de Misiones. Universidad Nacional de Misiones. Facultad de Ciencias Exactas Químicas y Naturales. Instituto de Materiales de Misiones; Argentina Fil: Kuna, Horacio Daniel. Universidad Nacional de Misiones; Argentina |
description |
Nowadays, the prediction about dental implant failure is determined through clinical and radiological evaluation. For this reason, predictions are highly dependent on the Implantologists’ experience. In addition, it is extremely crucial to detect in time if a dental implant is going to fail, due to time, cost, trauma to the patient, postoperative problems, among others. This paper proposes a procedure using multiple feature selection methods and classification algorithms to improve the accuracy of dental implant failures in the province of Misiones, Argentina, validated by human experts. The experimentation is performed with two data sets, a set of dental implants made for the case study and an artificially generated set. The proposed approach allows to know the most relevant features and improve the accuracy in the classification of the target class (dental implant failure), to avoid biasing the decision making based on the application and results of individual methods. The proposed approach achieves an accuracy of 79% of failures, while individual classifiers achieve a maximum of 72%. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/178184 Ganz, Nancy Beatriz; Ares, Alicia Esther; Kuna, Horacio Daniel; Procedure to improve the accuracy of dental implant failures by data science techniques; Universidad Nacional de La Plata. Facultad de Informatica; Journal of Computer Science & Technology; 21; 2; 10-2021; 146-156 1666-6046 1666-6038 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/178184 |
identifier_str_mv |
Ganz, Nancy Beatriz; Ares, Alicia Esther; Kuna, Horacio Daniel; Procedure to improve the accuracy of dental implant failures by data science techniques; Universidad Nacional de La Plata. Facultad de Informatica; Journal of Computer Science & Technology; 21; 2; 10-2021; 146-156 1666-6046 1666-6038 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journal.info.unlp.edu.ar/JCST/article/view/1816 info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.21.e13 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Informatica |
publisher.none.fl_str_mv |
Universidad Nacional de La Plata. Facultad de Informatica |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613618147000320 |
score |
13.070432 |