Sobre los grafos VPT y los grafos EPT

Autores
Mazzoleni, María Pía
Año de publicación
2014
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Gutiérrez, Marisa
Alcón, Liliana
Descripción
El grafo de intersección de una familia de conjuntos es un grafo cuyos vértices son los miembros de la familia y la adyacencia es definida por la intersección no vacía de los correspondientes miembros. Los grafos de intersección son bastante conocidos y muy estudiados. Algunas clases de grafos definidas como intersección son hereditarias y pueden ser caracterizadas por subgrafos inducidos prohibidos minimales. Los elementos de las familias y las propiedades que las definen aparecen en varios contextos, modelando diferentes situaciones, inclusive de la vida real, lo que es un incentivo adicional para el estudio de estas clases. Ejemplos clásicos son los grafos de intervalos y los grafos cordales. Un grafo de intervalos es el grafo de intersección de una familia de intervalos en la recta real, o, en forma equivalente, el grafo vértice intersección de una familia de subcaminos de un camino. Llamamos Intervalos a la clase formada por los grafos de intervalos. Un grafo cordal es un grafo sin ciclos inducidos de longitud al menos cuatro. Llamamos Cordal a la clase formada por los grafos cordales. Gavril probó que un grafo es cordal si y sólo si es el grafo vértice intersección de una familia de subárboles de un árbol. Ambas clases han sido cuidadosamente estudiadas en la literatura. Con el fin de definir nuevas clases de grafos representadas por subárboles, se imponen condiciones en los árboles, subárboles y en el tamaño de la intersección. Sean h, s y t enteros positivos; una (h,s,t)-representación de un grafo G consiste de un árbol huésped T y una colección (T_v), siendo v un vértice de G, de subárboles de T, tal que: el grado máximo de T es a lo sumo h; todo subárbol T_v tiene grado máximo a lo sumo s; dos vértices v y w son adyacentes en G si y sólo si los correspondientes subárboles T_v y T_w tienen al menos t vértices en común en T. La clase de grafos que tiene una (h,s,t)-representación es denotada [h,s,t]. Cuando no hay restricción en el grado máximo de T o en el grado máximo de los subárboles, usamos h=∞ y s=∞ respectivamente. De ahí que, [∞, ∞,1] = Cordal y [2,2,1] = Intervalos. Las clases [∞,2,1] y [∞,2,2] son llamadas VPT (vertex intersection graph of paths in a tree) y EPT (edge intersection graph of paths in a tree) respectivamente. VPT y EPT son clases incomparables de grafos. Sin embargo, cuando el grado máximo del árbol huésped es tres la clase de los grafos VPT coincide con la clase de los grafos EPT. Los grafos VPT son útiles en muchas áreas, entre las cuales cabe destacar la genética, arqueología y ecología. Los grafos EPT son usados en aplicaciones de redes, donde el problema de planificación de llamadas no dirigidas en una red que es un árbol es equivalente al problema de colorear un grafo EPT. La red de comunicación está representada como un grafo no dirigido de interconexión, donde cada arista es asociada con una conexión física entre nodos. Una llamada no dirigida es un camino en la red. Cuando la red es un árbol, este modelo es claramente una representación EPT. Colorear el grafo EPT de forma tal que dos vértices adyacentes tengan distintos colores, significa que llamadas no dirigidas que comparten una conexión física tienen que planificarse en distintos momentos. En los últimos años, el estudio de las clases [h,s,t] ha merecido varias publicaciones en la literatura. El mínimo t tal que un grafo dado pertenece a [3,3,t] ha sido estudiado. Se ha demostrado que [3,3,1] = Cordal. Los [4,4,2] grafos han sido caracterizados y se da un algoritmo polinomial para su reconocimiento. Las clases [4,2,2] y [4,3,2] han sido estudiadas. La relación entre diferentes clases de grafos de intersección de caminos en un árbol también ha sido analizada. Gravril mostró que el problema de reconocer a los grafos VPT es polinomial. Por otro lado, el reconocimiento de los grafos EPT es un problema NP-completo. Esta Tesis está organizada de la siguiente forma: El Capítulo 2 contiene definiciones que serán utilizadas en los capítulos siguientes y que son necesarias para entender el texto. En el Capítulo 3 nos enfocamos en las clases [h,2,1] para cualquier h>2 fijo; estas son todas subclases de VPT. Caracterizamos a los grafos [h,2,1] usando el número cromático. Mostramos que el problema de decidir si un grafo VPT dado pertenece a [h,2,1] es NP-completo, mientras que el problema de decidir si el grafo dado pertenece a [h,2,1]-[h-1,2,1] es NP-difícil. Ambos problemas permanecen difíciles aún cuando nos restringimos a la clase VPT ∩ Split. Adicionalmente, presentamos una subclase no trivial de VPT ∩ Split en la cual estos problemas son polinomiales. El caso h=2 no es considerado porque [2,2,1]= Intervalos. Nuestros resultados se aplican para cualquier h>2 fijo, pueden ser vistos como una generalización del caso h=3 el cual coincide con la clase [3,2,1]=[3,2,2]= VPT ∩ EPT = EPT ∩ Cordal. Las clases [h,2,1], son cerradas por subgrafos inducidos, de ahí que cada una puede ser caracterizada por una familia de subgrafos inducidos prohibidos minimales. Tal familia es conocida sólo para h=2 y hay algunos resultados parciales para h=3. En este Capítulo asociamos los subgrafos inducidos prohibidos minimales para [h,2,1] que son VPT con los grafos (color) críticos. Describimos cómo obtener subgrafos inducidos prohibidos minimales a partir de los grafos críticos, más aún, mostramos que la familia de grafos obtenida usando nuestro procedimiento es exactamente la familia de subgrafos inducidos prohibidos minimales para [h,2,1] que son VPT. Esta familia junto con la familia de subgrafos inducidos prohibidos minimales para VPT, es la familia de subgrafos inducidos prohibidos minimales para [h,2,1], con h>2. En el Capítulo 4 caracterizamos la clase [h,2,1] por subgrafos inducidos prohibidos minimales para cada h>2 fijo. Cabe destacar que, tomando h=3, obtenemos una caracterización por subgrafos inducidos prohibidos minimales para la clase VPT ∩ EPT = EPT ∩ Cordal=[3,2,2]=[3,2,1]. En el Capítulo 5 damos una nueva condición necesaria para ser un grafo EPT. Para esto nos basamos en la estructura de los cliques de un grafo EPT. Además, encontramos una nueva familia de subgrafos inducidos prohibidos minimales para la clase EPT. En el Capítulo 6 nos enfocamos en los grafos EPT que pueden ser representados en un árbol con grado acotado. Respondemos negativamente una pregunta que Golumbic, Lypshteyn y Stern dejaron abierta, basándonos en la representación EPT que tienen los ciclos de un grafo EPT. Finalmente, en el Capítulo 7, damos algunas conclusiones y analizamos cuáles son los trabajos futuros que nos gustaría realizar.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Matemática
grafos de intersección
respresentaciones en árboles
grafos críticos
subgrafos prohibidos
problemas de reconocimiento
grafos VPT
grafos EPT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/36487

id SEDICI_a35a81484c08c3dd6b16b194ba7f0d79
oai_identifier_str oai:sedici.unlp.edu.ar:10915/36487
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Sobre los grafos VPT y los grafos EPTMazzoleni, María PíaCiencias ExactasMatemáticagrafos de intersecciónrespresentaciones en árbolesgrafos críticossubgrafos prohibidosproblemas de reconocimientografos VPTgrafos EPTEl grafo de intersección de una familia de conjuntos es un grafo cuyos vértices son los miembros de la familia y la adyacencia es definida por la intersección no vacía de los correspondientes miembros. Los grafos de intersección son bastante conocidos y muy estudiados. Algunas clases de grafos definidas como intersección son hereditarias y pueden ser caracterizadas por subgrafos inducidos prohibidos minimales. Los elementos de las familias y las propiedades que las definen aparecen en varios contextos, modelando diferentes situaciones, inclusive de la vida real, lo que es un incentivo adicional para el estudio de estas clases. Ejemplos clásicos son los grafos de intervalos y los grafos cordales. Un grafo de intervalos es el grafo de intersección de una familia de intervalos en la recta real, o, en forma equivalente, el grafo vértice intersección de una familia de subcaminos de un camino. Llamamos Intervalos a la clase formada por los grafos de intervalos. Un grafo cordal es un grafo sin ciclos inducidos de longitud al menos cuatro. Llamamos Cordal a la clase formada por los grafos cordales. Gavril probó que un grafo es cordal si y sólo si es el grafo vértice intersección de una familia de subárboles de un árbol. Ambas clases han sido cuidadosamente estudiadas en la literatura. Con el fin de definir nuevas clases de grafos representadas por subárboles, se imponen condiciones en los árboles, subárboles y en el tamaño de la intersección. Sean h, s y t enteros positivos; una (h,s,t)-representación de un grafo G consiste de un árbol huésped T y una colección (T_v), siendo v un vértice de G, de subárboles de T, tal que: el grado máximo de T es a lo sumo h; todo subárbol T_v tiene grado máximo a lo sumo s; dos vértices v y w son adyacentes en G si y sólo si los correspondientes subárboles T_v y T_w tienen al menos t vértices en común en T. La clase de grafos que tiene una (h,s,t)-representación es denotada [h,s,t]. Cuando no hay restricción en el grado máximo de T o en el grado máximo de los subárboles, usamos h=∞ y s=∞ respectivamente. De ahí que, [∞, ∞,1] = Cordal y [2,2,1] = Intervalos. Las clases [∞,2,1] y [∞,2,2] son llamadas VPT (vertex intersection graph of paths in a tree) y EPT (edge intersection graph of paths in a tree) respectivamente. VPT y EPT son clases incomparables de grafos. Sin embargo, cuando el grado máximo del árbol huésped es tres la clase de los grafos VPT coincide con la clase de los grafos EPT. Los grafos VPT son útiles en muchas áreas, entre las cuales cabe destacar la genética, arqueología y ecología. Los grafos EPT son usados en aplicaciones de redes, donde el problema de planificación de llamadas no dirigidas en una red que es un árbol es equivalente al problema de colorear un grafo EPT. La red de comunicación está representada como un grafo no dirigido de interconexión, donde cada arista es asociada con una conexión física entre nodos. Una llamada no dirigida es un camino en la red. Cuando la red es un árbol, este modelo es claramente una representación EPT. Colorear el grafo EPT de forma tal que dos vértices adyacentes tengan distintos colores, significa que llamadas no dirigidas que comparten una conexión física tienen que planificarse en distintos momentos. En los últimos años, el estudio de las clases [h,s,t] ha merecido varias publicaciones en la literatura. El mínimo t tal que un grafo dado pertenece a [3,3,t] ha sido estudiado. Se ha demostrado que [3,3,1] = Cordal. Los [4,4,2] grafos han sido caracterizados y se da un algoritmo polinomial para su reconocimiento. Las clases [4,2,2] y [4,3,2] han sido estudiadas. La relación entre diferentes clases de grafos de intersección de caminos en un árbol también ha sido analizada. Gravril mostró que el problema de reconocer a los grafos VPT es polinomial. Por otro lado, el reconocimiento de los grafos EPT es un problema NP-completo. Esta Tesis está organizada de la siguiente forma: El Capítulo 2 contiene definiciones que serán utilizadas en los capítulos siguientes y que son necesarias para entender el texto. En el Capítulo 3 nos enfocamos en las clases [h,2,1] para cualquier h>2 fijo; estas son todas subclases de VPT. Caracterizamos a los grafos [h,2,1] usando el número cromático. Mostramos que el problema de decidir si un grafo VPT dado pertenece a [h,2,1] es NP-completo, mientras que el problema de decidir si el grafo dado pertenece a [h,2,1]-[h-1,2,1] es NP-difícil. Ambos problemas permanecen difíciles aún cuando nos restringimos a la clase VPT ∩ Split. Adicionalmente, presentamos una subclase no trivial de VPT ∩ Split en la cual estos problemas son polinomiales. El caso h=2 no es considerado porque [2,2,1]= Intervalos. Nuestros resultados se aplican para cualquier h>2 fijo, pueden ser vistos como una generalización del caso h=3 el cual coincide con la clase [3,2,1]=[3,2,2]= VPT ∩ EPT = EPT ∩ Cordal. Las clases [h,2,1], son cerradas por subgrafos inducidos, de ahí que cada una puede ser caracterizada por una familia de subgrafos inducidos prohibidos minimales. Tal familia es conocida sólo para h=2 y hay algunos resultados parciales para h=3. En este Capítulo asociamos los subgrafos inducidos prohibidos minimales para [h,2,1] que son VPT con los grafos (color) críticos. Describimos cómo obtener subgrafos inducidos prohibidos minimales a partir de los grafos críticos, más aún, mostramos que la familia de grafos obtenida usando nuestro procedimiento es exactamente la familia de subgrafos inducidos prohibidos minimales para [h,2,1] que son VPT. Esta familia junto con la familia de subgrafos inducidos prohibidos minimales para VPT, es la familia de subgrafos inducidos prohibidos minimales para [h,2,1], con h>2. En el Capítulo 4 caracterizamos la clase [h,2,1] por subgrafos inducidos prohibidos minimales para cada h>2 fijo. Cabe destacar que, tomando h=3, obtenemos una caracterización por subgrafos inducidos prohibidos minimales para la clase VPT ∩ EPT = EPT ∩ Cordal=[3,2,2]=[3,2,1]. En el Capítulo 5 damos una nueva condición necesaria para ser un grafo EPT. Para esto nos basamos en la estructura de los cliques de un grafo EPT. Además, encontramos una nueva familia de subgrafos inducidos prohibidos minimales para la clase EPT. En el Capítulo 6 nos enfocamos en los grafos EPT que pueden ser representados en un árbol con grado acotado. Respondemos negativamente una pregunta que Golumbic, Lypshteyn y Stern dejaron abierta, basándonos en la representación EPT que tienen los ciclos de un grafo EPT. Finalmente, en el Capítulo 7, damos algunas conclusiones y analizamos cuáles son los trabajos futuros que nos gustaría realizar.Doctor en Ciencias Exactas, área MatemáticaUniversidad Nacional de La PlataFacultad de Ciencias ExactasGutiérrez, MarisaAlcón, Liliana2014-05-30info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/36487https://doi.org/10.35537/10915/36487spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Argentina (CC BY-NC-ND 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:32:20Zoai:sedici.unlp.edu.ar:10915/36487Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:32:21.02SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Sobre los grafos VPT y los grafos EPT
title Sobre los grafos VPT y los grafos EPT
spellingShingle Sobre los grafos VPT y los grafos EPT
Mazzoleni, María Pía
Ciencias Exactas
Matemática
grafos de intersección
respresentaciones en árboles
grafos críticos
subgrafos prohibidos
problemas de reconocimiento
grafos VPT
grafos EPT
title_short Sobre los grafos VPT y los grafos EPT
title_full Sobre los grafos VPT y los grafos EPT
title_fullStr Sobre los grafos VPT y los grafos EPT
title_full_unstemmed Sobre los grafos VPT y los grafos EPT
title_sort Sobre los grafos VPT y los grafos EPT
dc.creator.none.fl_str_mv Mazzoleni, María Pía
author Mazzoleni, María Pía
author_facet Mazzoleni, María Pía
author_role author
dc.contributor.none.fl_str_mv Gutiérrez, Marisa
Alcón, Liliana
dc.subject.none.fl_str_mv Ciencias Exactas
Matemática
grafos de intersección
respresentaciones en árboles
grafos críticos
subgrafos prohibidos
problemas de reconocimiento
grafos VPT
grafos EPT
topic Ciencias Exactas
Matemática
grafos de intersección
respresentaciones en árboles
grafos críticos
subgrafos prohibidos
problemas de reconocimiento
grafos VPT
grafos EPT
dc.description.none.fl_txt_mv El grafo de intersección de una familia de conjuntos es un grafo cuyos vértices son los miembros de la familia y la adyacencia es definida por la intersección no vacía de los correspondientes miembros. Los grafos de intersección son bastante conocidos y muy estudiados. Algunas clases de grafos definidas como intersección son hereditarias y pueden ser caracterizadas por subgrafos inducidos prohibidos minimales. Los elementos de las familias y las propiedades que las definen aparecen en varios contextos, modelando diferentes situaciones, inclusive de la vida real, lo que es un incentivo adicional para el estudio de estas clases. Ejemplos clásicos son los grafos de intervalos y los grafos cordales. Un grafo de intervalos es el grafo de intersección de una familia de intervalos en la recta real, o, en forma equivalente, el grafo vértice intersección de una familia de subcaminos de un camino. Llamamos Intervalos a la clase formada por los grafos de intervalos. Un grafo cordal es un grafo sin ciclos inducidos de longitud al menos cuatro. Llamamos Cordal a la clase formada por los grafos cordales. Gavril probó que un grafo es cordal si y sólo si es el grafo vértice intersección de una familia de subárboles de un árbol. Ambas clases han sido cuidadosamente estudiadas en la literatura. Con el fin de definir nuevas clases de grafos representadas por subárboles, se imponen condiciones en los árboles, subárboles y en el tamaño de la intersección. Sean h, s y t enteros positivos; una (h,s,t)-representación de un grafo G consiste de un árbol huésped T y una colección (T_v), siendo v un vértice de G, de subárboles de T, tal que: el grado máximo de T es a lo sumo h; todo subárbol T_v tiene grado máximo a lo sumo s; dos vértices v y w son adyacentes en G si y sólo si los correspondientes subárboles T_v y T_w tienen al menos t vértices en común en T. La clase de grafos que tiene una (h,s,t)-representación es denotada [h,s,t]. Cuando no hay restricción en el grado máximo de T o en el grado máximo de los subárboles, usamos h=∞ y s=∞ respectivamente. De ahí que, [∞, ∞,1] = Cordal y [2,2,1] = Intervalos. Las clases [∞,2,1] y [∞,2,2] son llamadas VPT (vertex intersection graph of paths in a tree) y EPT (edge intersection graph of paths in a tree) respectivamente. VPT y EPT son clases incomparables de grafos. Sin embargo, cuando el grado máximo del árbol huésped es tres la clase de los grafos VPT coincide con la clase de los grafos EPT. Los grafos VPT son útiles en muchas áreas, entre las cuales cabe destacar la genética, arqueología y ecología. Los grafos EPT son usados en aplicaciones de redes, donde el problema de planificación de llamadas no dirigidas en una red que es un árbol es equivalente al problema de colorear un grafo EPT. La red de comunicación está representada como un grafo no dirigido de interconexión, donde cada arista es asociada con una conexión física entre nodos. Una llamada no dirigida es un camino en la red. Cuando la red es un árbol, este modelo es claramente una representación EPT. Colorear el grafo EPT de forma tal que dos vértices adyacentes tengan distintos colores, significa que llamadas no dirigidas que comparten una conexión física tienen que planificarse en distintos momentos. En los últimos años, el estudio de las clases [h,s,t] ha merecido varias publicaciones en la literatura. El mínimo t tal que un grafo dado pertenece a [3,3,t] ha sido estudiado. Se ha demostrado que [3,3,1] = Cordal. Los [4,4,2] grafos han sido caracterizados y se da un algoritmo polinomial para su reconocimiento. Las clases [4,2,2] y [4,3,2] han sido estudiadas. La relación entre diferentes clases de grafos de intersección de caminos en un árbol también ha sido analizada. Gravril mostró que el problema de reconocer a los grafos VPT es polinomial. Por otro lado, el reconocimiento de los grafos EPT es un problema NP-completo. Esta Tesis está organizada de la siguiente forma: El Capítulo 2 contiene definiciones que serán utilizadas en los capítulos siguientes y que son necesarias para entender el texto. En el Capítulo 3 nos enfocamos en las clases [h,2,1] para cualquier h>2 fijo; estas son todas subclases de VPT. Caracterizamos a los grafos [h,2,1] usando el número cromático. Mostramos que el problema de decidir si un grafo VPT dado pertenece a [h,2,1] es NP-completo, mientras que el problema de decidir si el grafo dado pertenece a [h,2,1]-[h-1,2,1] es NP-difícil. Ambos problemas permanecen difíciles aún cuando nos restringimos a la clase VPT ∩ Split. Adicionalmente, presentamos una subclase no trivial de VPT ∩ Split en la cual estos problemas son polinomiales. El caso h=2 no es considerado porque [2,2,1]= Intervalos. Nuestros resultados se aplican para cualquier h>2 fijo, pueden ser vistos como una generalización del caso h=3 el cual coincide con la clase [3,2,1]=[3,2,2]= VPT ∩ EPT = EPT ∩ Cordal. Las clases [h,2,1], son cerradas por subgrafos inducidos, de ahí que cada una puede ser caracterizada por una familia de subgrafos inducidos prohibidos minimales. Tal familia es conocida sólo para h=2 y hay algunos resultados parciales para h=3. En este Capítulo asociamos los subgrafos inducidos prohibidos minimales para [h,2,1] que son VPT con los grafos (color) críticos. Describimos cómo obtener subgrafos inducidos prohibidos minimales a partir de los grafos críticos, más aún, mostramos que la familia de grafos obtenida usando nuestro procedimiento es exactamente la familia de subgrafos inducidos prohibidos minimales para [h,2,1] que son VPT. Esta familia junto con la familia de subgrafos inducidos prohibidos minimales para VPT, es la familia de subgrafos inducidos prohibidos minimales para [h,2,1], con h>2. En el Capítulo 4 caracterizamos la clase [h,2,1] por subgrafos inducidos prohibidos minimales para cada h>2 fijo. Cabe destacar que, tomando h=3, obtenemos una caracterización por subgrafos inducidos prohibidos minimales para la clase VPT ∩ EPT = EPT ∩ Cordal=[3,2,2]=[3,2,1]. En el Capítulo 5 damos una nueva condición necesaria para ser un grafo EPT. Para esto nos basamos en la estructura de los cliques de un grafo EPT. Además, encontramos una nueva familia de subgrafos inducidos prohibidos minimales para la clase EPT. En el Capítulo 6 nos enfocamos en los grafos EPT que pueden ser representados en un árbol con grado acotado. Respondemos negativamente una pregunta que Golumbic, Lypshteyn y Stern dejaron abierta, basándonos en la representación EPT que tienen los ciclos de un grafo EPT. Finalmente, en el Capítulo 7, damos algunas conclusiones y analizamos cuáles son los trabajos futuros que nos gustaría realizar.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
description El grafo de intersección de una familia de conjuntos es un grafo cuyos vértices son los miembros de la familia y la adyacencia es definida por la intersección no vacía de los correspondientes miembros. Los grafos de intersección son bastante conocidos y muy estudiados. Algunas clases de grafos definidas como intersección son hereditarias y pueden ser caracterizadas por subgrafos inducidos prohibidos minimales. Los elementos de las familias y las propiedades que las definen aparecen en varios contextos, modelando diferentes situaciones, inclusive de la vida real, lo que es un incentivo adicional para el estudio de estas clases. Ejemplos clásicos son los grafos de intervalos y los grafos cordales. Un grafo de intervalos es el grafo de intersección de una familia de intervalos en la recta real, o, en forma equivalente, el grafo vértice intersección de una familia de subcaminos de un camino. Llamamos Intervalos a la clase formada por los grafos de intervalos. Un grafo cordal es un grafo sin ciclos inducidos de longitud al menos cuatro. Llamamos Cordal a la clase formada por los grafos cordales. Gavril probó que un grafo es cordal si y sólo si es el grafo vértice intersección de una familia de subárboles de un árbol. Ambas clases han sido cuidadosamente estudiadas en la literatura. Con el fin de definir nuevas clases de grafos representadas por subárboles, se imponen condiciones en los árboles, subárboles y en el tamaño de la intersección. Sean h, s y t enteros positivos; una (h,s,t)-representación de un grafo G consiste de un árbol huésped T y una colección (T_v), siendo v un vértice de G, de subárboles de T, tal que: el grado máximo de T es a lo sumo h; todo subárbol T_v tiene grado máximo a lo sumo s; dos vértices v y w son adyacentes en G si y sólo si los correspondientes subárboles T_v y T_w tienen al menos t vértices en común en T. La clase de grafos que tiene una (h,s,t)-representación es denotada [h,s,t]. Cuando no hay restricción en el grado máximo de T o en el grado máximo de los subárboles, usamos h=∞ y s=∞ respectivamente. De ahí que, [∞, ∞,1] = Cordal y [2,2,1] = Intervalos. Las clases [∞,2,1] y [∞,2,2] son llamadas VPT (vertex intersection graph of paths in a tree) y EPT (edge intersection graph of paths in a tree) respectivamente. VPT y EPT son clases incomparables de grafos. Sin embargo, cuando el grado máximo del árbol huésped es tres la clase de los grafos VPT coincide con la clase de los grafos EPT. Los grafos VPT son útiles en muchas áreas, entre las cuales cabe destacar la genética, arqueología y ecología. Los grafos EPT son usados en aplicaciones de redes, donde el problema de planificación de llamadas no dirigidas en una red que es un árbol es equivalente al problema de colorear un grafo EPT. La red de comunicación está representada como un grafo no dirigido de interconexión, donde cada arista es asociada con una conexión física entre nodos. Una llamada no dirigida es un camino en la red. Cuando la red es un árbol, este modelo es claramente una representación EPT. Colorear el grafo EPT de forma tal que dos vértices adyacentes tengan distintos colores, significa que llamadas no dirigidas que comparten una conexión física tienen que planificarse en distintos momentos. En los últimos años, el estudio de las clases [h,s,t] ha merecido varias publicaciones en la literatura. El mínimo t tal que un grafo dado pertenece a [3,3,t] ha sido estudiado. Se ha demostrado que [3,3,1] = Cordal. Los [4,4,2] grafos han sido caracterizados y se da un algoritmo polinomial para su reconocimiento. Las clases [4,2,2] y [4,3,2] han sido estudiadas. La relación entre diferentes clases de grafos de intersección de caminos en un árbol también ha sido analizada. Gravril mostró que el problema de reconocer a los grafos VPT es polinomial. Por otro lado, el reconocimiento de los grafos EPT es un problema NP-completo. Esta Tesis está organizada de la siguiente forma: El Capítulo 2 contiene definiciones que serán utilizadas en los capítulos siguientes y que son necesarias para entender el texto. En el Capítulo 3 nos enfocamos en las clases [h,2,1] para cualquier h>2 fijo; estas son todas subclases de VPT. Caracterizamos a los grafos [h,2,1] usando el número cromático. Mostramos que el problema de decidir si un grafo VPT dado pertenece a [h,2,1] es NP-completo, mientras que el problema de decidir si el grafo dado pertenece a [h,2,1]-[h-1,2,1] es NP-difícil. Ambos problemas permanecen difíciles aún cuando nos restringimos a la clase VPT ∩ Split. Adicionalmente, presentamos una subclase no trivial de VPT ∩ Split en la cual estos problemas son polinomiales. El caso h=2 no es considerado porque [2,2,1]= Intervalos. Nuestros resultados se aplican para cualquier h>2 fijo, pueden ser vistos como una generalización del caso h=3 el cual coincide con la clase [3,2,1]=[3,2,2]= VPT ∩ EPT = EPT ∩ Cordal. Las clases [h,2,1], son cerradas por subgrafos inducidos, de ahí que cada una puede ser caracterizada por una familia de subgrafos inducidos prohibidos minimales. Tal familia es conocida sólo para h=2 y hay algunos resultados parciales para h=3. En este Capítulo asociamos los subgrafos inducidos prohibidos minimales para [h,2,1] que son VPT con los grafos (color) críticos. Describimos cómo obtener subgrafos inducidos prohibidos minimales a partir de los grafos críticos, más aún, mostramos que la familia de grafos obtenida usando nuestro procedimiento es exactamente la familia de subgrafos inducidos prohibidos minimales para [h,2,1] que son VPT. Esta familia junto con la familia de subgrafos inducidos prohibidos minimales para VPT, es la familia de subgrafos inducidos prohibidos minimales para [h,2,1], con h>2. En el Capítulo 4 caracterizamos la clase [h,2,1] por subgrafos inducidos prohibidos minimales para cada h>2 fijo. Cabe destacar que, tomando h=3, obtenemos una caracterización por subgrafos inducidos prohibidos minimales para la clase VPT ∩ EPT = EPT ∩ Cordal=[3,2,2]=[3,2,1]. En el Capítulo 5 damos una nueva condición necesaria para ser un grafo EPT. Para esto nos basamos en la estructura de los cliques de un grafo EPT. Además, encontramos una nueva familia de subgrafos inducidos prohibidos minimales para la clase EPT. En el Capítulo 6 nos enfocamos en los grafos EPT que pueden ser representados en un árbol con grado acotado. Respondemos negativamente una pregunta que Golumbic, Lypshteyn y Stern dejaron abierta, basándonos en la representación EPT que tienen los ciclos de un grafo EPT. Finalmente, en el Capítulo 7, damos algunas conclusiones y analizamos cuáles son los trabajos futuros que nos gustaría realizar.
publishDate 2014
dc.date.none.fl_str_mv 2014-05-30
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/36487
https://doi.org/10.35537/10915/36487
url http://sedici.unlp.edu.ar/handle/10915/36487
https://doi.org/10.35537/10915/36487
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Argentina (CC BY-NC-ND 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Argentina (CC BY-NC-ND 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260170785161216
score 13.13397