A Proposal for Outlier and Noise Detection in Public Official's Affidavits

Autores
López-Pablos, Rodrigo; Kuna, Horacio Daniel; Pesado, Patricia Mabel; Estayno, Marcelo Gustavo; Piccoli, María Fabiana
Año de publicación
2017
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
Outlier and noise detection processes are highly useful in the quality assessment of any kind of database. Such processes may have novel civic and public applications in the detection of anomalies in public data. The purpose of this work is to explore the possibilities of experimentation with, validation and application of hybrid outlier and noise detection procedures in public officials' affidavit systems currently available in Argentina.
Red de Universidades con Carreras en Informática
Materia
Ciencias Informáticas
Anomalies and noise, Public data, Public officials, Affidavits, Databases, Outliers
Anomalías y ruido, Datos públicos, Funcionarios públicos, Declaraciones juradas, Bases de datos, Outliers
Аномалии и шум, Публичные данные, Должностные лица, Аффидевиты, Базы данных, Отклонения
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/66736

id SEDICI_a3396032fe14adb510f90fd838e2e648
oai_identifier_str oai:sedici.unlp.edu.ar:10915/66736
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A Proposal for Outlier and Noise Detection in Public Official's AffidavitsUna propuesta para la detección de datos anómalos y ruido en declaraciones juradas públicasLópez-Pablos, RodrigoKuna, Horacio DanielPesado, Patricia MabelEstayno, Marcelo GustavoPiccoli, María FabianaCiencias InformáticasAnomalies and noise, Public data, Public officials, Affidavits, Databases, OutliersAnomalías y ruido, Datos públicos, Funcionarios públicos, Declaraciones juradas, Bases de datos, OutliersАномалии и шум, Публичные данные, Должностные лица, Аффидевиты, Базы данных, ОтклоненияOutlier and noise detection processes are highly useful in the quality assessment of any kind of database. Such processes may have novel civic and public applications in the detection of anomalies in public data. The purpose of this work is to explore the possibilities of experimentation with, validation and application of hybrid outlier and noise detection procedures in public officials' affidavit systems currently available in Argentina.Red de Universidades con Carreras en InformáticaEditorial de la Universidad Nacional de La Plata (EDULP)2017info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionCapitulo de librohttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdf201-210http://sedici.unlp.edu.ar/handle/10915/66736enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-4127-28-0info:eu-repo/semantics/reference/hdl/10915/61164info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:42:06Zoai:sedici.unlp.edu.ar:10915/66736Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:42:06.789SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A Proposal for Outlier and Noise Detection in Public Official's Affidavits
Una propuesta para la detección de datos anómalos y ruido en declaraciones juradas públicas
title A Proposal for Outlier and Noise Detection in Public Official's Affidavits
spellingShingle A Proposal for Outlier and Noise Detection in Public Official's Affidavits
López-Pablos, Rodrigo
Ciencias Informáticas
Anomalies and noise, Public data, Public officials, Affidavits, Databases, Outliers
Anomalías y ruido, Datos públicos, Funcionarios públicos, Declaraciones juradas, Bases de datos, Outliers
Аномалии и шум, Публичные данные, Должностные лица, Аффидевиты, Базы данных, Отклонения
title_short A Proposal for Outlier and Noise Detection in Public Official's Affidavits
title_full A Proposal for Outlier and Noise Detection in Public Official's Affidavits
title_fullStr A Proposal for Outlier and Noise Detection in Public Official's Affidavits
title_full_unstemmed A Proposal for Outlier and Noise Detection in Public Official's Affidavits
title_sort A Proposal for Outlier and Noise Detection in Public Official's Affidavits
dc.creator.none.fl_str_mv López-Pablos, Rodrigo
Kuna, Horacio Daniel
Pesado, Patricia Mabel
Estayno, Marcelo Gustavo
Piccoli, María Fabiana
author López-Pablos, Rodrigo
author_facet López-Pablos, Rodrigo
Kuna, Horacio Daniel
Pesado, Patricia Mabel
Estayno, Marcelo Gustavo
Piccoli, María Fabiana
author_role author
author2 Kuna, Horacio Daniel
Pesado, Patricia Mabel
Estayno, Marcelo Gustavo
Piccoli, María Fabiana
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Anomalies and noise, Public data, Public officials, Affidavits, Databases, Outliers
Anomalías y ruido, Datos públicos, Funcionarios públicos, Declaraciones juradas, Bases de datos, Outliers
Аномалии и шум, Публичные данные, Должностные лица, Аффидевиты, Базы данных, Отклонения
topic Ciencias Informáticas
Anomalies and noise, Public data, Public officials, Affidavits, Databases, Outliers
Anomalías y ruido, Datos públicos, Funcionarios públicos, Declaraciones juradas, Bases de datos, Outliers
Аномалии и шум, Публичные данные, Должностные лица, Аффидевиты, Базы данных, Отклонения
dc.description.none.fl_txt_mv Outlier and noise detection processes are highly useful in the quality assessment of any kind of database. Such processes may have novel civic and public applications in the detection of anomalies in public data. The purpose of this work is to explore the possibilities of experimentation with, validation and application of hybrid outlier and noise detection procedures in public officials' affidavit systems currently available in Argentina.
Red de Universidades con Carreras en Informática
description Outlier and noise detection processes are highly useful in the quality assessment of any kind of database. Such processes may have novel civic and public applications in the detection of anomalies in public data. The purpose of this work is to explore the possibilities of experimentation with, validation and application of hybrid outlier and noise detection procedures in public officials' affidavit systems currently available in Argentina.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart
info:eu-repo/semantics/publishedVersion
Capitulo de libro
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
format bookPart
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/66736
url http://sedici.unlp.edu.ar/handle/10915/66736
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-4127-28-0
info:eu-repo/semantics/reference/hdl/10915/61164
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
201-210
dc.publisher.none.fl_str_mv Editorial de la Universidad Nacional de La Plata (EDULP)
publisher.none.fl_str_mv Editorial de la Universidad Nacional de La Plata (EDULP)
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260288135495680
score 13.13397