Speech emotion representation : A method to convert discrete to dimensional emotional models for emotional inference multimodal frameworks
- Autores
- Elkfury, Fernando; Ierache, Jorge Salvador
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Computer-Human interaction is more frequent now than ever before, thus the main goal of this research area is to improve communication with computers, so it becomes as natural as possible. A key aspect to achieve such interaction is the affective component often missing from last decade developments. To improve computer human interaction in this paper we present a method to convert discrete or categorical data from a CNN emotion classifier trained with Mel scale spectrograms to a two-dimensional model, pursuing integration of the human voice as a feature for emotional inference multimodal frameworks. Lastly, we discuss preliminary results obtained from presenting audiovisual stimuli to different subject and comparing dimensional arousal-valence results and it’s SAM surveys.
Facultad de Informática - Materia
-
Ciencias Informáticas
Emotions
Multimodal Framework
Affective computing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/125145
Ver los metadatos del registro completo
id |
SEDICI_a044596183de7d43fabc6f8739640cad |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/125145 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Speech emotion representation : A method to convert discrete to dimensional emotional models for emotional inference multimodal frameworksElkfury, FernandoIerache, Jorge SalvadorCiencias InformáticasEmotionsMultimodal FrameworkAffective computingComputer-Human interaction is more frequent now than ever before, thus the main goal of this research area is to improve communication with computers, so it becomes as natural as possible. A key aspect to achieve such interaction is the affective component often missing from last decade developments. To improve computer human interaction in this paper we present a method to convert discrete or categorical data from a CNN emotion classifier trained with Mel scale spectrograms to a two-dimensional model, pursuing integration of the human voice as a feature for emotional inference multimodal frameworks. Lastly, we discuss preliminary results obtained from presenting audiovisual stimuli to different subject and comparing dimensional arousal-valence results and it’s SAM surveys.Facultad de Informática2021info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf33-36http://sedici.unlp.edu.ar/handle/10915/125145enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2016-4info:eu-repo/semantics/reference/hdl/10915/121564info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:08Zoai:sedici.unlp.edu.ar:10915/125145Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:08.446SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Speech emotion representation : A method to convert discrete to dimensional emotional models for emotional inference multimodal frameworks |
title |
Speech emotion representation : A method to convert discrete to dimensional emotional models for emotional inference multimodal frameworks |
spellingShingle |
Speech emotion representation : A method to convert discrete to dimensional emotional models for emotional inference multimodal frameworks Elkfury, Fernando Ciencias Informáticas Emotions Multimodal Framework Affective computing |
title_short |
Speech emotion representation : A method to convert discrete to dimensional emotional models for emotional inference multimodal frameworks |
title_full |
Speech emotion representation : A method to convert discrete to dimensional emotional models for emotional inference multimodal frameworks |
title_fullStr |
Speech emotion representation : A method to convert discrete to dimensional emotional models for emotional inference multimodal frameworks |
title_full_unstemmed |
Speech emotion representation : A method to convert discrete to dimensional emotional models for emotional inference multimodal frameworks |
title_sort |
Speech emotion representation : A method to convert discrete to dimensional emotional models for emotional inference multimodal frameworks |
dc.creator.none.fl_str_mv |
Elkfury, Fernando Ierache, Jorge Salvador |
author |
Elkfury, Fernando |
author_facet |
Elkfury, Fernando Ierache, Jorge Salvador |
author_role |
author |
author2 |
Ierache, Jorge Salvador |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Emotions Multimodal Framework Affective computing |
topic |
Ciencias Informáticas Emotions Multimodal Framework Affective computing |
dc.description.none.fl_txt_mv |
Computer-Human interaction is more frequent now than ever before, thus the main goal of this research area is to improve communication with computers, so it becomes as natural as possible. A key aspect to achieve such interaction is the affective component often missing from last decade developments. To improve computer human interaction in this paper we present a method to convert discrete or categorical data from a CNN emotion classifier trained with Mel scale spectrograms to a two-dimensional model, pursuing integration of the human voice as a feature for emotional inference multimodal frameworks. Lastly, we discuss preliminary results obtained from presenting audiovisual stimuli to different subject and comparing dimensional arousal-valence results and it’s SAM surveys. Facultad de Informática |
description |
Computer-Human interaction is more frequent now than ever before, thus the main goal of this research area is to improve communication with computers, so it becomes as natural as possible. A key aspect to achieve such interaction is the affective component often missing from last decade developments. To improve computer human interaction in this paper we present a method to convert discrete or categorical data from a CNN emotion classifier trained with Mel scale spectrograms to a two-dimensional model, pursuing integration of the human voice as a feature for emotional inference multimodal frameworks. Lastly, we discuss preliminary results obtained from presenting audiovisual stimuli to different subject and comparing dimensional arousal-valence results and it’s SAM surveys. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/125145 |
url |
http://sedici.unlp.edu.ar/handle/10915/125145 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2016-4 info:eu-repo/semantics/reference/hdl/10915/121564 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 33-36 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616180817461248 |
score |
13.070432 |