Current State and Future Perspectives in QSAR Models to Predict Blood Brain Barrier penetration in Central Nervous System Drug R&D
- Autores
- Morales, Juan Francisco; Scioli Montoto, Sebastián; Fagiolino, Pietro; Ruiz, María
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The blood brain barrier (BBB) is a physical and biochemical barrier that restricts the entry of certain drugs to the Central Nervous System (CNS), while allowing the passage of others. The ability to predict the permeability of a given molecule through the BBB is a key aspect in CNS drug discovery and development, since neurotherapeutic agents with molecular targets in the CNS should be able to cross the BBB, whereas peripherally acting agents should not, to minimize the risk of CNS adverse effects. In this review we examine and discuss QSAR approaches and current availability of experimental data for the construction of BBB permeability predictive models, focusing on the modeling of the biorelevant parameter unbound partitioning coefficient (Kp,uu) . Emphasis is made on two possible strategies to overcome the current limitations of in silico models: considering the prediction of brain penetration as a multifactorial problem, and increasing experimental datasets through accurate and standardized experimental techniques.
Facultad de Ciencias Exactas - Materia
-
Biología
Blood-brain barrier
Brain penetration
Central nervous system
Microdialysis
Passive difussion
Pharmacokinetic
QSAR models
Protein binding,
Unbound drug fraction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/103692
Ver los metadatos del registro completo
id |
SEDICI_996c329df91b7f9a66b5a64f1f513efb |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/103692 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Current State and Future Perspectives in QSAR Models to Predict Blood Brain Barrier penetration in Central Nervous System Drug R&DMorales, Juan FranciscoScioli Montoto, SebastiánFagiolino, PietroRuiz, MaríaBiologíaBlood-brain barrierBrain penetrationCentral nervous systemMicrodialysisPassive difussionPharmacokineticQSAR modelsProtein binding,Unbound drug fractionThe blood brain barrier (BBB) is a physical and biochemical barrier that restricts the entry of certain drugs to the Central Nervous System (CNS), while allowing the passage of others. The ability to predict the permeability of a given molecule through the BBB is a key aspect in CNS drug discovery and development, since neurotherapeutic agents with molecular targets in the CNS should be able to cross the BBB, whereas peripherally acting agents should not, to minimize the risk of CNS adverse effects. In this review we examine and discuss QSAR approaches and current availability of experimental data for the construction of BBB permeability predictive models, focusing on the modeling of the biorelevant parameter unbound partitioning coefficient (Kp,uu) . Emphasis is made on two possible strategies to overcome the current limitations of in silico models: considering the prediction of brain penetration as a multifactorial problem, and increasing experimental datasets through accurate and standardized experimental techniques.Facultad de Ciencias Exactas2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/103692enginfo:eu-repo/semantics/altIdentifier/issn/1389-5575info:eu-repo/semantics/altIdentifier/doi/10.2174/1389557516666161013110813info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:54:44Zoai:sedici.unlp.edu.ar:10915/103692Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:54:45.137SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Current State and Future Perspectives in QSAR Models to Predict Blood Brain Barrier penetration in Central Nervous System Drug R&D |
title |
Current State and Future Perspectives in QSAR Models to Predict Blood Brain Barrier penetration in Central Nervous System Drug R&D |
spellingShingle |
Current State and Future Perspectives in QSAR Models to Predict Blood Brain Barrier penetration in Central Nervous System Drug R&D Morales, Juan Francisco Biología Blood-brain barrier Brain penetration Central nervous system Microdialysis Passive difussion Pharmacokinetic QSAR models Protein binding, Unbound drug fraction |
title_short |
Current State and Future Perspectives in QSAR Models to Predict Blood Brain Barrier penetration in Central Nervous System Drug R&D |
title_full |
Current State and Future Perspectives in QSAR Models to Predict Blood Brain Barrier penetration in Central Nervous System Drug R&D |
title_fullStr |
Current State and Future Perspectives in QSAR Models to Predict Blood Brain Barrier penetration in Central Nervous System Drug R&D |
title_full_unstemmed |
Current State and Future Perspectives in QSAR Models to Predict Blood Brain Barrier penetration in Central Nervous System Drug R&D |
title_sort |
Current State and Future Perspectives in QSAR Models to Predict Blood Brain Barrier penetration in Central Nervous System Drug R&D |
dc.creator.none.fl_str_mv |
Morales, Juan Francisco Scioli Montoto, Sebastián Fagiolino, Pietro Ruiz, María |
author |
Morales, Juan Francisco |
author_facet |
Morales, Juan Francisco Scioli Montoto, Sebastián Fagiolino, Pietro Ruiz, María |
author_role |
author |
author2 |
Scioli Montoto, Sebastián Fagiolino, Pietro Ruiz, María |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Biología Blood-brain barrier Brain penetration Central nervous system Microdialysis Passive difussion Pharmacokinetic QSAR models Protein binding, Unbound drug fraction |
topic |
Biología Blood-brain barrier Brain penetration Central nervous system Microdialysis Passive difussion Pharmacokinetic QSAR models Protein binding, Unbound drug fraction |
dc.description.none.fl_txt_mv |
The blood brain barrier (BBB) is a physical and biochemical barrier that restricts the entry of certain drugs to the Central Nervous System (CNS), while allowing the passage of others. The ability to predict the permeability of a given molecule through the BBB is a key aspect in CNS drug discovery and development, since neurotherapeutic agents with molecular targets in the CNS should be able to cross the BBB, whereas peripherally acting agents should not, to minimize the risk of CNS adverse effects. In this review we examine and discuss QSAR approaches and current availability of experimental data for the construction of BBB permeability predictive models, focusing on the modeling of the biorelevant parameter unbound partitioning coefficient (Kp,uu) . Emphasis is made on two possible strategies to overcome the current limitations of in silico models: considering the prediction of brain penetration as a multifactorial problem, and increasing experimental datasets through accurate and standardized experimental techniques. Facultad de Ciencias Exactas |
description |
The blood brain barrier (BBB) is a physical and biochemical barrier that restricts the entry of certain drugs to the Central Nervous System (CNS), while allowing the passage of others. The ability to predict the permeability of a given molecule through the BBB is a key aspect in CNS drug discovery and development, since neurotherapeutic agents with molecular targets in the CNS should be able to cross the BBB, whereas peripherally acting agents should not, to minimize the risk of CNS adverse effects. In this review we examine and discuss QSAR approaches and current availability of experimental data for the construction of BBB permeability predictive models, focusing on the modeling of the biorelevant parameter unbound partitioning coefficient (Kp,uu) . Emphasis is made on two possible strategies to overcome the current limitations of in silico models: considering the prediction of brain penetration as a multifactorial problem, and increasing experimental datasets through accurate and standardized experimental techniques. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/103692 |
url |
http://sedici.unlp.edu.ar/handle/10915/103692 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1389-5575 info:eu-repo/semantics/altIdentifier/doi/10.2174/1389557516666161013110813 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260433858199552 |
score |
13.13397 |