Application of machine learning to predict unbound drug bioavailability in the brain
- Autores
- Morales, Juan Francisco; Ruiz, María Esperanza; Stratford, Robert E.; Talevi, Alan
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Purpose: Optimizing brain bioavailability is highly relevant for the development of drugs targeting the central nervous system. Several pharmacokinetic parameters have been used for measuring drug bioavailability in the brain. The most biorelevant among them is possibly the unbound brain-to-plasma partition coefficient, Kpuu,brain,ss, which relates unbound brain and plasma drug concentrations under steady-state conditions. In this study, we developed new in silico models to predict Kpuu,brain,ss.Methods: A manually curated 157-compound dataset was compiled from literature and split into training and test sets using a clustering approach. Additional models were trained with a refined dataset generated by removing known P-gp and/or Breast Cancer Resistance Protein substrates from the original dataset. Different supervised machine learning algorithms have been tested, including Support Vector Machine, Gradient Boosting Machine, k-nearest neighbors, classificatory Partial Least Squares, Random Forest, Extreme Gradient Boosting, Deep Learning and Linear Discriminant Analysis. Good practices of predictive Quantitative Structure-Activity Relationships modeling were followed for the development of the models.Results: The best performance in the complete dataset was achieved by extreme gradient boosting, with an accuracy in the test set of 85.1%. A similar estimation of accuracy was observed in a prospective validation experiment, using a small sample of compounds and comparing predicted unbound brain bioavailability with observed experimental data.Conclusion: New in silico models were developed to predict the Kpuu,brain,ss of drug candidates. The dataset used in this study is publicly disclosed, so that the models may be reproduced, refined, or expanded, as a useful tool to assist drug discovery processes.
Fil: Morales, Juan Francisco. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Ruiz, María Esperanza. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Stratford, Robert E.. Indiana University. School Of Medicine.; Estados Unidos
Fil: Talevi, Alan. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina - Materia
-
ADME PROPERTIES
BLOOD-BRAIN BARRIER
BRAIN BIOAVAILABILITY
CENTRAL NERVOUS SYSTEM
MACHINE LEARNING
PHARMACOKINETIC MODELING
ARTIFICIAL INTELLIGENCE
UNBOUND PARTITION COEFFICIENT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/234146
Ver los metadatos del registro completo
| id |
CONICETDig_a379806ccd6f9028845a84c1c44227a3 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/234146 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Application of machine learning to predict unbound drug bioavailability in the brainMorales, Juan FranciscoRuiz, María EsperanzaStratford, Robert E.Talevi, AlanADME PROPERTIESBLOOD-BRAIN BARRIERBRAIN BIOAVAILABILITYCENTRAL NERVOUS SYSTEMMACHINE LEARNINGPHARMACOKINETIC MODELINGARTIFICIAL INTELLIGENCEUNBOUND PARTITION COEFFICIENThttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Purpose: Optimizing brain bioavailability is highly relevant for the development of drugs targeting the central nervous system. Several pharmacokinetic parameters have been used for measuring drug bioavailability in the brain. The most biorelevant among them is possibly the unbound brain-to-plasma partition coefficient, Kpuu,brain,ss, which relates unbound brain and plasma drug concentrations under steady-state conditions. In this study, we developed new in silico models to predict Kpuu,brain,ss.Methods: A manually curated 157-compound dataset was compiled from literature and split into training and test sets using a clustering approach. Additional models were trained with a refined dataset generated by removing known P-gp and/or Breast Cancer Resistance Protein substrates from the original dataset. Different supervised machine learning algorithms have been tested, including Support Vector Machine, Gradient Boosting Machine, k-nearest neighbors, classificatory Partial Least Squares, Random Forest, Extreme Gradient Boosting, Deep Learning and Linear Discriminant Analysis. Good practices of predictive Quantitative Structure-Activity Relationships modeling were followed for the development of the models.Results: The best performance in the complete dataset was achieved by extreme gradient boosting, with an accuracy in the test set of 85.1%. A similar estimation of accuracy was observed in a prospective validation experiment, using a small sample of compounds and comparing predicted unbound brain bioavailability with observed experimental data.Conclusion: New in silico models were developed to predict the Kpuu,brain,ss of drug candidates. The dataset used in this study is publicly disclosed, so that the models may be reproduced, refined, or expanded, as a useful tool to assist drug discovery processes.Fil: Morales, Juan Francisco. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Ruiz, María Esperanza. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Stratford, Robert E.. Indiana University. School Of Medicine.; Estados UnidosFil: Talevi, Alan. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFrontiers Media2024-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/234146Morales, Juan Francisco; Ruiz, María Esperanza; Stratford, Robert E.; Talevi, Alan; Application of machine learning to predict unbound drug bioavailability in the brain; Frontiers Media; Frontiers in Drug Discovery; 4; 4-2024; 1-142674-0338CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fddsv.2024.1360732/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fddsv.2024.1360732info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-01-08T12:59:14Zoai:ri.conicet.gov.ar:11336/234146instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-01-08 12:59:15.164CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Application of machine learning to predict unbound drug bioavailability in the brain |
| title |
Application of machine learning to predict unbound drug bioavailability in the brain |
| spellingShingle |
Application of machine learning to predict unbound drug bioavailability in the brain Morales, Juan Francisco ADME PROPERTIES BLOOD-BRAIN BARRIER BRAIN BIOAVAILABILITY CENTRAL NERVOUS SYSTEM MACHINE LEARNING PHARMACOKINETIC MODELING ARTIFICIAL INTELLIGENCE UNBOUND PARTITION COEFFICIENT |
| title_short |
Application of machine learning to predict unbound drug bioavailability in the brain |
| title_full |
Application of machine learning to predict unbound drug bioavailability in the brain |
| title_fullStr |
Application of machine learning to predict unbound drug bioavailability in the brain |
| title_full_unstemmed |
Application of machine learning to predict unbound drug bioavailability in the brain |
| title_sort |
Application of machine learning to predict unbound drug bioavailability in the brain |
| dc.creator.none.fl_str_mv |
Morales, Juan Francisco Ruiz, María Esperanza Stratford, Robert E. Talevi, Alan |
| author |
Morales, Juan Francisco |
| author_facet |
Morales, Juan Francisco Ruiz, María Esperanza Stratford, Robert E. Talevi, Alan |
| author_role |
author |
| author2 |
Ruiz, María Esperanza Stratford, Robert E. Talevi, Alan |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
ADME PROPERTIES BLOOD-BRAIN BARRIER BRAIN BIOAVAILABILITY CENTRAL NERVOUS SYSTEM MACHINE LEARNING PHARMACOKINETIC MODELING ARTIFICIAL INTELLIGENCE UNBOUND PARTITION COEFFICIENT |
| topic |
ADME PROPERTIES BLOOD-BRAIN BARRIER BRAIN BIOAVAILABILITY CENTRAL NERVOUS SYSTEM MACHINE LEARNING PHARMACOKINETIC MODELING ARTIFICIAL INTELLIGENCE UNBOUND PARTITION COEFFICIENT |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Purpose: Optimizing brain bioavailability is highly relevant for the development of drugs targeting the central nervous system. Several pharmacokinetic parameters have been used for measuring drug bioavailability in the brain. The most biorelevant among them is possibly the unbound brain-to-plasma partition coefficient, Kpuu,brain,ss, which relates unbound brain and plasma drug concentrations under steady-state conditions. In this study, we developed new in silico models to predict Kpuu,brain,ss.Methods: A manually curated 157-compound dataset was compiled from literature and split into training and test sets using a clustering approach. Additional models were trained with a refined dataset generated by removing known P-gp and/or Breast Cancer Resistance Protein substrates from the original dataset. Different supervised machine learning algorithms have been tested, including Support Vector Machine, Gradient Boosting Machine, k-nearest neighbors, classificatory Partial Least Squares, Random Forest, Extreme Gradient Boosting, Deep Learning and Linear Discriminant Analysis. Good practices of predictive Quantitative Structure-Activity Relationships modeling were followed for the development of the models.Results: The best performance in the complete dataset was achieved by extreme gradient boosting, with an accuracy in the test set of 85.1%. A similar estimation of accuracy was observed in a prospective validation experiment, using a small sample of compounds and comparing predicted unbound brain bioavailability with observed experimental data.Conclusion: New in silico models were developed to predict the Kpuu,brain,ss of drug candidates. The dataset used in this study is publicly disclosed, so that the models may be reproduced, refined, or expanded, as a useful tool to assist drug discovery processes. Fil: Morales, Juan Francisco. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Ruiz, María Esperanza. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Stratford, Robert E.. Indiana University. School Of Medicine.; Estados Unidos Fil: Talevi, Alan. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
| description |
Purpose: Optimizing brain bioavailability is highly relevant for the development of drugs targeting the central nervous system. Several pharmacokinetic parameters have been used for measuring drug bioavailability in the brain. The most biorelevant among them is possibly the unbound brain-to-plasma partition coefficient, Kpuu,brain,ss, which relates unbound brain and plasma drug concentrations under steady-state conditions. In this study, we developed new in silico models to predict Kpuu,brain,ss.Methods: A manually curated 157-compound dataset was compiled from literature and split into training and test sets using a clustering approach. Additional models were trained with a refined dataset generated by removing known P-gp and/or Breast Cancer Resistance Protein substrates from the original dataset. Different supervised machine learning algorithms have been tested, including Support Vector Machine, Gradient Boosting Machine, k-nearest neighbors, classificatory Partial Least Squares, Random Forest, Extreme Gradient Boosting, Deep Learning and Linear Discriminant Analysis. Good practices of predictive Quantitative Structure-Activity Relationships modeling were followed for the development of the models.Results: The best performance in the complete dataset was achieved by extreme gradient boosting, with an accuracy in the test set of 85.1%. A similar estimation of accuracy was observed in a prospective validation experiment, using a small sample of compounds and comparing predicted unbound brain bioavailability with observed experimental data.Conclusion: New in silico models were developed to predict the Kpuu,brain,ss of drug candidates. The dataset used in this study is publicly disclosed, so that the models may be reproduced, refined, or expanded, as a useful tool to assist drug discovery processes. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/234146 Morales, Juan Francisco; Ruiz, María Esperanza; Stratford, Robert E.; Talevi, Alan; Application of machine learning to predict unbound drug bioavailability in the brain; Frontiers Media; Frontiers in Drug Discovery; 4; 4-2024; 1-14 2674-0338 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/234146 |
| identifier_str_mv |
Morales, Juan Francisco; Ruiz, María Esperanza; Stratford, Robert E.; Talevi, Alan; Application of machine learning to predict unbound drug bioavailability in the brain; Frontiers Media; Frontiers in Drug Discovery; 4; 4-2024; 1-14 2674-0338 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fddsv.2024.1360732/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fddsv.2024.1360732 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Frontiers Media |
| publisher.none.fl_str_mv |
Frontiers Media |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1853775519886082048 |
| score |
12.747614 |