The Positive Matching Index: A new similarity measure with optimal characteristics
- Autores
- Dos Santos, Daniel Andrés; Deutsch, Reena
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Despite the many coefficients accounting for the resemblance between pairs of objects based on presence/absence data, no one measure shows optimal characteristics. In this work the Positive Matching Index (PMI) is proposed as a new measure of similarity between lists of attributes. PMI fulfills the Tulloss' theoretical prerequisites for similarity coefficients, is easy to calculate and has an intrinsic meaning expressable into a natural language. PMI is bounded between 0 and 1 and represents the mean proportion of positive matches relative to the size of attribute lists, ranging this cardinality continuously from the smaller list to the larger one. PMI behaves correctly where alternative indices either fail, or only approximate to the desirable properties for a similarity index. Empirical examples associated to biomedical research are provided to show outperformance of PMI in relation to standard indices such as Jaccard and Dice coefficients.
Fil: Dos Santos, Daniel Andrés. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Deutsch, Reena. University of California at San Diego; Estados Unidos - Materia
-
Association Coefficient
Binary Data
Dice Index
Jaccard Index
Similarity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/75324
Ver los metadatos del registro completo
id |
CONICETDig_13f6362ac3c0289bba968f18ed23d10d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/75324 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Positive Matching Index: A new similarity measure with optimal characteristicsDos Santos, Daniel AndrésDeutsch, ReenaAssociation CoefficientBinary DataDice IndexJaccard IndexSimilarityhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Despite the many coefficients accounting for the resemblance between pairs of objects based on presence/absence data, no one measure shows optimal characteristics. In this work the Positive Matching Index (PMI) is proposed as a new measure of similarity between lists of attributes. PMI fulfills the Tulloss' theoretical prerequisites for similarity coefficients, is easy to calculate and has an intrinsic meaning expressable into a natural language. PMI is bounded between 0 and 1 and represents the mean proportion of positive matches relative to the size of attribute lists, ranging this cardinality continuously from the smaller list to the larger one. PMI behaves correctly where alternative indices either fail, or only approximate to the desirable properties for a similarity index. Empirical examples associated to biomedical research are provided to show outperformance of PMI in relation to standard indices such as Jaccard and Dice coefficients.Fil: Dos Santos, Daniel Andrés. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Deutsch, Reena. University of California at San Diego; Estados UnidosElsevier Science2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75324Dos Santos, Daniel Andrés; Deutsch, Reena; The Positive Matching Index: A new similarity measure with optimal characteristics; Elsevier Science; Pattern Recognition Letters; 31; 12; 9-2010; 1570-15760167-8655CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167865510000917info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patrec.2010.03.010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:35Zoai:ri.conicet.gov.ar:11336/75324instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:36.05CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Positive Matching Index: A new similarity measure with optimal characteristics |
title |
The Positive Matching Index: A new similarity measure with optimal characteristics |
spellingShingle |
The Positive Matching Index: A new similarity measure with optimal characteristics Dos Santos, Daniel Andrés Association Coefficient Binary Data Dice Index Jaccard Index Similarity |
title_short |
The Positive Matching Index: A new similarity measure with optimal characteristics |
title_full |
The Positive Matching Index: A new similarity measure with optimal characteristics |
title_fullStr |
The Positive Matching Index: A new similarity measure with optimal characteristics |
title_full_unstemmed |
The Positive Matching Index: A new similarity measure with optimal characteristics |
title_sort |
The Positive Matching Index: A new similarity measure with optimal characteristics |
dc.creator.none.fl_str_mv |
Dos Santos, Daniel Andrés Deutsch, Reena |
author |
Dos Santos, Daniel Andrés |
author_facet |
Dos Santos, Daniel Andrés Deutsch, Reena |
author_role |
author |
author2 |
Deutsch, Reena |
author2_role |
author |
dc.subject.none.fl_str_mv |
Association Coefficient Binary Data Dice Index Jaccard Index Similarity |
topic |
Association Coefficient Binary Data Dice Index Jaccard Index Similarity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Despite the many coefficients accounting for the resemblance between pairs of objects based on presence/absence data, no one measure shows optimal characteristics. In this work the Positive Matching Index (PMI) is proposed as a new measure of similarity between lists of attributes. PMI fulfills the Tulloss' theoretical prerequisites for similarity coefficients, is easy to calculate and has an intrinsic meaning expressable into a natural language. PMI is bounded between 0 and 1 and represents the mean proportion of positive matches relative to the size of attribute lists, ranging this cardinality continuously from the smaller list to the larger one. PMI behaves correctly where alternative indices either fail, or only approximate to the desirable properties for a similarity index. Empirical examples associated to biomedical research are provided to show outperformance of PMI in relation to standard indices such as Jaccard and Dice coefficients. Fil: Dos Santos, Daniel Andrés. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina Fil: Deutsch, Reena. University of California at San Diego; Estados Unidos |
description |
Despite the many coefficients accounting for the resemblance between pairs of objects based on presence/absence data, no one measure shows optimal characteristics. In this work the Positive Matching Index (PMI) is proposed as a new measure of similarity between lists of attributes. PMI fulfills the Tulloss' theoretical prerequisites for similarity coefficients, is easy to calculate and has an intrinsic meaning expressable into a natural language. PMI is bounded between 0 and 1 and represents the mean proportion of positive matches relative to the size of attribute lists, ranging this cardinality continuously from the smaller list to the larger one. PMI behaves correctly where alternative indices either fail, or only approximate to the desirable properties for a similarity index. Empirical examples associated to biomedical research are provided to show outperformance of PMI in relation to standard indices such as Jaccard and Dice coefficients. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/75324 Dos Santos, Daniel Andrés; Deutsch, Reena; The Positive Matching Index: A new similarity measure with optimal characteristics; Elsevier Science; Pattern Recognition Letters; 31; 12; 9-2010; 1570-1576 0167-8655 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/75324 |
identifier_str_mv |
Dos Santos, Daniel Andrés; Deutsch, Reena; The Positive Matching Index: A new similarity measure with optimal characteristics; Elsevier Science; Pattern Recognition Letters; 31; 12; 9-2010; 1570-1576 0167-8655 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167865510000917 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.patrec.2010.03.010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613403416461312 |
score |
13.070432 |