Fuzzy Harmonic Systems for Traffic Risk
- Autores
- Bel, Walter; Luise, Daniela López de
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper aims to present a model for traffic risk prediction. Its contribution is the adaptation of Fuzzy Logic applied to Harmonic Systems in order to make it more flexible and powerful in certain contexts. The possibility of having a good traffic risk prediction opens a practical possibility to successfully improve the security not only for drivers, but also for pedestrians and cyclists. The proposed model is able to process in real-time with simple data provided by the environment and the individual whose risk is being processed. The scope of this paper covers the technical description of the model, statistical analysis and comparison with alternates using Traditional Ruled-Expert Systems (RES), Harmonic Systems (HS) and Fuzzy Harmonic Systems (FHS). Also a short proposal for the prototype is described. Results indicate a remarkable improvement for the FHS predictor compared to RES and HS.
Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI).
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
fuzzy harmonic systems
harmonic systems
expert systems
traffic risk prediction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/63486
Ver los metadatos del registro completo
id |
SEDICI_95db2bfc1413a20d5869455f49ac6d5e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/63486 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Fuzzy Harmonic Systems for Traffic RiskBel, WalterLuise, Daniela López deCiencias Informáticasfuzzy harmonic systemsharmonic systemsexpert systemstraffic risk predictionThis paper aims to present a model for traffic risk prediction. Its contribution is the adaptation of Fuzzy Logic applied to Harmonic Systems in order to make it more flexible and powerful in certain contexts. The possibility of having a good traffic risk prediction opens a practical possibility to successfully improve the security not only for drivers, but also for pedestrians and cyclists. The proposed model is able to process in real-time with simple data provided by the environment and the individual whose risk is being processed. The scope of this paper covers the technical description of the model, statistical analysis and comparison with alternates using Traditional Ruled-Expert Systems (RES), Harmonic Systems (HS) and Fuzzy Harmonic Systems (FHS). Also a short proposal for the prototype is described. Results indicate a remarkable improvement for the FHS predictor compared to RES and HS.Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI).Red de Universidades con Carreras en Informática (RedUNCI)2017-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf63-72http://sedici.unlp.edu.ar/handle/10915/63486enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-1539-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:08:24Zoai:sedici.unlp.edu.ar:10915/63486Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:08:25.011SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Fuzzy Harmonic Systems for Traffic Risk |
title |
Fuzzy Harmonic Systems for Traffic Risk |
spellingShingle |
Fuzzy Harmonic Systems for Traffic Risk Bel, Walter Ciencias Informáticas fuzzy harmonic systems harmonic systems expert systems traffic risk prediction |
title_short |
Fuzzy Harmonic Systems for Traffic Risk |
title_full |
Fuzzy Harmonic Systems for Traffic Risk |
title_fullStr |
Fuzzy Harmonic Systems for Traffic Risk |
title_full_unstemmed |
Fuzzy Harmonic Systems for Traffic Risk |
title_sort |
Fuzzy Harmonic Systems for Traffic Risk |
dc.creator.none.fl_str_mv |
Bel, Walter Luise, Daniela López de |
author |
Bel, Walter |
author_facet |
Bel, Walter Luise, Daniela López de |
author_role |
author |
author2 |
Luise, Daniela López de |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas fuzzy harmonic systems harmonic systems expert systems traffic risk prediction |
topic |
Ciencias Informáticas fuzzy harmonic systems harmonic systems expert systems traffic risk prediction |
dc.description.none.fl_txt_mv |
This paper aims to present a model for traffic risk prediction. Its contribution is the adaptation of Fuzzy Logic applied to Harmonic Systems in order to make it more flexible and powerful in certain contexts. The possibility of having a good traffic risk prediction opens a practical possibility to successfully improve the security not only for drivers, but also for pedestrians and cyclists. The proposed model is able to process in real-time with simple data provided by the environment and the individual whose risk is being processed. The scope of this paper covers the technical description of the model, statistical analysis and comparison with alternates using Traditional Ruled-Expert Systems (RES), Harmonic Systems (HS) and Fuzzy Harmonic Systems (FHS). Also a short proposal for the prototype is described. Results indicate a remarkable improvement for the FHS predictor compared to RES and HS. Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI). Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This paper aims to present a model for traffic risk prediction. Its contribution is the adaptation of Fuzzy Logic applied to Harmonic Systems in order to make it more flexible and powerful in certain contexts. The possibility of having a good traffic risk prediction opens a practical possibility to successfully improve the security not only for drivers, but also for pedestrians and cyclists. The proposed model is able to process in real-time with simple data provided by the environment and the individual whose risk is being processed. The scope of this paper covers the technical description of the model, statistical analysis and comparison with alternates using Traditional Ruled-Expert Systems (RES), Harmonic Systems (HS) and Fuzzy Harmonic Systems (FHS). Also a short proposal for the prototype is described. Results indicate a remarkable improvement for the FHS predictor compared to RES and HS. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/63486 |
url |
http://sedici.unlp.edu.ar/handle/10915/63486 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-34-1539-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 63-72 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615956609892352 |
score |
13.070432 |