Fuzzy Harmonic Systems for Traffic Risk

Autores
Bel, Walter; Luise, Daniela López de
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This paper aims to present a model for traffic risk prediction. Its contribution is the adaptation of Fuzzy Logic applied to Harmonic Systems in order to make it more flexible and powerful in certain contexts. The possibility of having a good traffic risk prediction opens a practical possibility to successfully improve the security not only for drivers, but also for pedestrians and cyclists. The proposed model is able to process in real-time with simple data provided by the environment and the individual whose risk is being processed. The scope of this paper covers the technical description of the model, statistical analysis and comparison with alternates using Traditional Ruled-Expert Systems (RES), Harmonic Systems (HS) and Fuzzy Harmonic Systems (FHS). Also a short proposal for the prototype is described. Results indicate a remarkable improvement for the FHS predictor compared to RES and HS.
Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI).
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
fuzzy harmonic systems
harmonic systems
expert systems
traffic risk prediction
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/63486

id SEDICI_95db2bfc1413a20d5869455f49ac6d5e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/63486
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Fuzzy Harmonic Systems for Traffic RiskBel, WalterLuise, Daniela López deCiencias Informáticasfuzzy harmonic systemsharmonic systemsexpert systemstraffic risk predictionThis paper aims to present a model for traffic risk prediction. Its contribution is the adaptation of Fuzzy Logic applied to Harmonic Systems in order to make it more flexible and powerful in certain contexts. The possibility of having a good traffic risk prediction opens a practical possibility to successfully improve the security not only for drivers, but also for pedestrians and cyclists. The proposed model is able to process in real-time with simple data provided by the environment and the individual whose risk is being processed. The scope of this paper covers the technical description of the model, statistical analysis and comparison with alternates using Traditional Ruled-Expert Systems (RES), Harmonic Systems (HS) and Fuzzy Harmonic Systems (FHS). Also a short proposal for the prototype is described. Results indicate a remarkable improvement for the FHS predictor compared to RES and HS.Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI).Red de Universidades con Carreras en Informática (RedUNCI)2017-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf63-72http://sedici.unlp.edu.ar/handle/10915/63486enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-1539-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:08:24Zoai:sedici.unlp.edu.ar:10915/63486Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:08:25.011SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Fuzzy Harmonic Systems for Traffic Risk
title Fuzzy Harmonic Systems for Traffic Risk
spellingShingle Fuzzy Harmonic Systems for Traffic Risk
Bel, Walter
Ciencias Informáticas
fuzzy harmonic systems
harmonic systems
expert systems
traffic risk prediction
title_short Fuzzy Harmonic Systems for Traffic Risk
title_full Fuzzy Harmonic Systems for Traffic Risk
title_fullStr Fuzzy Harmonic Systems for Traffic Risk
title_full_unstemmed Fuzzy Harmonic Systems for Traffic Risk
title_sort Fuzzy Harmonic Systems for Traffic Risk
dc.creator.none.fl_str_mv Bel, Walter
Luise, Daniela López de
author Bel, Walter
author_facet Bel, Walter
Luise, Daniela López de
author_role author
author2 Luise, Daniela López de
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
fuzzy harmonic systems
harmonic systems
expert systems
traffic risk prediction
topic Ciencias Informáticas
fuzzy harmonic systems
harmonic systems
expert systems
traffic risk prediction
dc.description.none.fl_txt_mv This paper aims to present a model for traffic risk prediction. Its contribution is the adaptation of Fuzzy Logic applied to Harmonic Systems in order to make it more flexible and powerful in certain contexts. The possibility of having a good traffic risk prediction opens a practical possibility to successfully improve the security not only for drivers, but also for pedestrians and cyclists. The proposed model is able to process in real-time with simple data provided by the environment and the individual whose risk is being processed. The scope of this paper covers the technical description of the model, statistical analysis and comparison with alternates using Traditional Ruled-Expert Systems (RES), Harmonic Systems (HS) and Fuzzy Harmonic Systems (FHS). Also a short proposal for the prototype is described. Results indicate a remarkable improvement for the FHS predictor compared to RES and HS.
Eje: XVIII Workshop de Agentes y Sistemas Inteligentes (WASI).
Red de Universidades con Carreras en Informática (RedUNCI)
description This paper aims to present a model for traffic risk prediction. Its contribution is the adaptation of Fuzzy Logic applied to Harmonic Systems in order to make it more flexible and powerful in certain contexts. The possibility of having a good traffic risk prediction opens a practical possibility to successfully improve the security not only for drivers, but also for pedestrians and cyclists. The proposed model is able to process in real-time with simple data provided by the environment and the individual whose risk is being processed. The scope of this paper covers the technical description of the model, statistical analysis and comparison with alternates using Traditional Ruled-Expert Systems (RES), Harmonic Systems (HS) and Fuzzy Harmonic Systems (FHS). Also a short proposal for the prototype is described. Results indicate a remarkable improvement for the FHS predictor compared to RES and HS.
publishDate 2017
dc.date.none.fl_str_mv 2017-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/63486
url http://sedici.unlp.edu.ar/handle/10915/63486
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-34-1539-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
63-72
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615956609892352
score 13.070432