Harmonic distortion analysis based on Hopf bifurcation theorem and fast fourier transform
- Autores
- Robbio, Federico I.; Paolini, Eduardo Emilio; Moiola, Jorge Luis; Chen, Guanrong
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A frequency domain method is used to estimate the harmonic contents of a smooth oscillation arising from the Hopf bifurcation mechanism. The harmonic contents up to the eighth-order are well estimated, which agree with the results obtained from a completely different approach that measures the frequency content of a signal by using digital signal processing techniques such as the Fast Fourier Transform (FFT). The accuracy of the approximation is evaluated by computing the Floquet multipliers of the variational system based on the fact that for periodic solutions one multiplier must be +1. The separation from this theoretical value is proportional to the error of the approximation. A limitation of the frequency domain method is encountered when being used for continuing the secondary branch of limit cycle bifurcations, such as pitchfork and period-doubling bifurcations. Two examples are shown to illustrate the main results: Colpitts' oscillator with a pitchfork bifurcation of cycles, and Chua's circuit with a period-doubling bifurcation of cycles.
Fil: Robbio, Federico I.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Paolini, Eduardo Emilio. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Moiola, Jorge Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina
Fil: Chen, Guanrong. University of Hong Kong; China - Materia
-
HARMONIC DISTORTION
ELECTRONIC OSCILLATOR
HARMONIC BALANCE
CHUA'S CIRCUIT
COLPITTS' OSCILLATOR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/105539
Ver los metadatos del registro completo
id |
CONICETDig_2c75abd80fc02a1b674c8e6901a8100c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/105539 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Harmonic distortion analysis based on Hopf bifurcation theorem and fast fourier transformRobbio, Federico I.Paolini, Eduardo EmilioMoiola, Jorge LuisChen, GuanrongHARMONIC DISTORTIONELECTRONIC OSCILLATORHARMONIC BALANCECHUA'S CIRCUITCOLPITTS' OSCILLATORhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2A frequency domain method is used to estimate the harmonic contents of a smooth oscillation arising from the Hopf bifurcation mechanism. The harmonic contents up to the eighth-order are well estimated, which agree with the results obtained from a completely different approach that measures the frequency content of a signal by using digital signal processing techniques such as the Fast Fourier Transform (FFT). The accuracy of the approximation is evaluated by computing the Floquet multipliers of the variational system based on the fact that for periodic solutions one multiplier must be +1. The separation from this theoretical value is proportional to the error of the approximation. A limitation of the frequency domain method is encountered when being used for continuing the secondary branch of limit cycle bifurcations, such as pitchfork and period-doubling bifurcations. Two examples are shown to illustrate the main results: Colpitts' oscillator with a pitchfork bifurcation of cycles, and Chua's circuit with a period-doubling bifurcation of cycles.Fil: Robbio, Federico I.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Paolini, Eduardo Emilio. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Moiola, Jorge Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Chen, Guanrong. University of Hong Kong; ChinaWorld Scientific2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/105539Robbio, Federico I.; Paolini, Eduardo Emilio; Moiola, Jorge Luis; Chen, Guanrong; Harmonic distortion analysis based on Hopf bifurcation theorem and fast fourier transform; World Scientific; International Journal Of Bifurcation And Chaos; 17; 05; 12-2007; 1623-16350218-12741793-6551CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/10.1142/S0218127407017951info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218127407017951info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:07Zoai:ri.conicet.gov.ar:11336/105539instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:07.545CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Harmonic distortion analysis based on Hopf bifurcation theorem and fast fourier transform |
title |
Harmonic distortion analysis based on Hopf bifurcation theorem and fast fourier transform |
spellingShingle |
Harmonic distortion analysis based on Hopf bifurcation theorem and fast fourier transform Robbio, Federico I. HARMONIC DISTORTION ELECTRONIC OSCILLATOR HARMONIC BALANCE CHUA'S CIRCUIT COLPITTS' OSCILLATOR |
title_short |
Harmonic distortion analysis based on Hopf bifurcation theorem and fast fourier transform |
title_full |
Harmonic distortion analysis based on Hopf bifurcation theorem and fast fourier transform |
title_fullStr |
Harmonic distortion analysis based on Hopf bifurcation theorem and fast fourier transform |
title_full_unstemmed |
Harmonic distortion analysis based on Hopf bifurcation theorem and fast fourier transform |
title_sort |
Harmonic distortion analysis based on Hopf bifurcation theorem and fast fourier transform |
dc.creator.none.fl_str_mv |
Robbio, Federico I. Paolini, Eduardo Emilio Moiola, Jorge Luis Chen, Guanrong |
author |
Robbio, Federico I. |
author_facet |
Robbio, Federico I. Paolini, Eduardo Emilio Moiola, Jorge Luis Chen, Guanrong |
author_role |
author |
author2 |
Paolini, Eduardo Emilio Moiola, Jorge Luis Chen, Guanrong |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
HARMONIC DISTORTION ELECTRONIC OSCILLATOR HARMONIC BALANCE CHUA'S CIRCUIT COLPITTS' OSCILLATOR |
topic |
HARMONIC DISTORTION ELECTRONIC OSCILLATOR HARMONIC BALANCE CHUA'S CIRCUIT COLPITTS' OSCILLATOR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
A frequency domain method is used to estimate the harmonic contents of a smooth oscillation arising from the Hopf bifurcation mechanism. The harmonic contents up to the eighth-order are well estimated, which agree with the results obtained from a completely different approach that measures the frequency content of a signal by using digital signal processing techniques such as the Fast Fourier Transform (FFT). The accuracy of the approximation is evaluated by computing the Floquet multipliers of the variational system based on the fact that for periodic solutions one multiplier must be +1. The separation from this theoretical value is proportional to the error of the approximation. A limitation of the frequency domain method is encountered when being used for continuing the secondary branch of limit cycle bifurcations, such as pitchfork and period-doubling bifurcations. Two examples are shown to illustrate the main results: Colpitts' oscillator with a pitchfork bifurcation of cycles, and Chua's circuit with a period-doubling bifurcation of cycles. Fil: Robbio, Federico I.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Paolini, Eduardo Emilio. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Moiola, Jorge Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina Fil: Chen, Guanrong. University of Hong Kong; China |
description |
A frequency domain method is used to estimate the harmonic contents of a smooth oscillation arising from the Hopf bifurcation mechanism. The harmonic contents up to the eighth-order are well estimated, which agree with the results obtained from a completely different approach that measures the frequency content of a signal by using digital signal processing techniques such as the Fast Fourier Transform (FFT). The accuracy of the approximation is evaluated by computing the Floquet multipliers of the variational system based on the fact that for periodic solutions one multiplier must be +1. The separation from this theoretical value is proportional to the error of the approximation. A limitation of the frequency domain method is encountered when being used for continuing the secondary branch of limit cycle bifurcations, such as pitchfork and period-doubling bifurcations. Two examples are shown to illustrate the main results: Colpitts' oscillator with a pitchfork bifurcation of cycles, and Chua's circuit with a period-doubling bifurcation of cycles. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/105539 Robbio, Federico I.; Paolini, Eduardo Emilio; Moiola, Jorge Luis; Chen, Guanrong; Harmonic distortion analysis based on Hopf bifurcation theorem and fast fourier transform; World Scientific; International Journal Of Bifurcation And Chaos; 17; 05; 12-2007; 1623-1635 0218-1274 1793-6551 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/105539 |
identifier_str_mv |
Robbio, Federico I.; Paolini, Eduardo Emilio; Moiola, Jorge Luis; Chen, Guanrong; Harmonic distortion analysis based on Hopf bifurcation theorem and fast fourier transform; World Scientific; International Journal Of Bifurcation And Chaos; 17; 05; 12-2007; 1623-1635 0218-1274 1793-6551 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/10.1142/S0218127407017951 info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218127407017951 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268954601455616 |
score |
13.13397 |