Regularity of the Schrödinger equation for the harmonic oscillator

Autores
Bongioanni, Bruno; Rogers, Keith M.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider the Schrödinger equation for the harmonic oscillator i∂tu=Hu, where H=-Δ+{pipe}x{pipe}2, with initial data in the Hermite-Sobolev space H-s/2L2(ℝn). We obtain smoothing and maximal estimates and apply these to perturbations of the equation and almost everywhere convergence problems.
Fil: Bongioanni, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Rogers, Keith M.. Instituto de Ciencias Matemáticas; España
Materia
Schrödinger
harmonic oscillator
Hermite expansion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/67932

id CONICETDig_2d5d27619ded9df4db1ff2813e2944ff
oai_identifier_str oai:ri.conicet.gov.ar:11336/67932
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Regularity of the Schrödinger equation for the harmonic oscillatorBongioanni, BrunoRogers, Keith M.Schrödingerharmonic oscillatorHermite expansionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the Schrödinger equation for the harmonic oscillator i∂tu=Hu, where H=-Δ+{pipe}x{pipe}2, with initial data in the Hermite-Sobolev space H-s/2L2(ℝn). We obtain smoothing and maximal estimates and apply these to perturbations of the equation and almost everywhere convergence problems.Fil: Bongioanni, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Rogers, Keith M.. Instituto de Ciencias Matemáticas; EspañaSpringer2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67932Bongioanni, Bruno; Rogers, Keith M.; Regularity of the Schrödinger equation for the harmonic oscillator; Springer; Arkiv For Matematik; 49; 2; 10-2011; 217-2380004-2080CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11512-009-0111-7info:eu-repo/semantics/altIdentifier/doi/10.1007/s11512-009-0111-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:10Zoai:ri.conicet.gov.ar:11336/67932instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:10.831CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Regularity of the Schrödinger equation for the harmonic oscillator
title Regularity of the Schrödinger equation for the harmonic oscillator
spellingShingle Regularity of the Schrödinger equation for the harmonic oscillator
Bongioanni, Bruno
Schrödinger
harmonic oscillator
Hermite expansion
title_short Regularity of the Schrödinger equation for the harmonic oscillator
title_full Regularity of the Schrödinger equation for the harmonic oscillator
title_fullStr Regularity of the Schrödinger equation for the harmonic oscillator
title_full_unstemmed Regularity of the Schrödinger equation for the harmonic oscillator
title_sort Regularity of the Schrödinger equation for the harmonic oscillator
dc.creator.none.fl_str_mv Bongioanni, Bruno
Rogers, Keith M.
author Bongioanni, Bruno
author_facet Bongioanni, Bruno
Rogers, Keith M.
author_role author
author2 Rogers, Keith M.
author2_role author
dc.subject.none.fl_str_mv Schrödinger
harmonic oscillator
Hermite expansion
topic Schrödinger
harmonic oscillator
Hermite expansion
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider the Schrödinger equation for the harmonic oscillator i∂tu=Hu, where H=-Δ+{pipe}x{pipe}2, with initial data in the Hermite-Sobolev space H-s/2L2(ℝn). We obtain smoothing and maximal estimates and apply these to perturbations of the equation and almost everywhere convergence problems.
Fil: Bongioanni, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Rogers, Keith M.. Instituto de Ciencias Matemáticas; España
description We consider the Schrödinger equation for the harmonic oscillator i∂tu=Hu, where H=-Δ+{pipe}x{pipe}2, with initial data in the Hermite-Sobolev space H-s/2L2(ℝn). We obtain smoothing and maximal estimates and apply these to perturbations of the equation and almost everywhere convergence problems.
publishDate 2011
dc.date.none.fl_str_mv 2011-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/67932
Bongioanni, Bruno; Rogers, Keith M.; Regularity of the Schrödinger equation for the harmonic oscillator; Springer; Arkiv For Matematik; 49; 2; 10-2011; 217-238
0004-2080
CONICET Digital
CONICET
url http://hdl.handle.net/11336/67932
identifier_str_mv Bongioanni, Bruno; Rogers, Keith M.; Regularity of the Schrödinger equation for the harmonic oscillator; Springer; Arkiv For Matematik; 49; 2; 10-2011; 217-238
0004-2080
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11512-009-0111-7
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11512-009-0111-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269445247991808
score 13.13397