Análisis de pogo en un cohete de combustible líquido

Autores
Logarzo, Hernán Javier; Scarabino, Ana Elena
Año de publicación
2010
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La interacción de vibraciones entre el sistema de propulsión y la estructura de un vehículo lanzador puede ser una fuente de inestabilidad dinámica. Desde los días del programa Gemini se han buscado formas para modelar y mitigar este fenómeno potencialmente desastroso, que fue llamado “Pogo”. Estos vehículos alcanzan el empuje necesario a través de la combustión de combustibles sólidos o líquidos en sus motores cohete. En un vehículo con combustible líquido, las bombas impulsan a los propelentes (combustible y oxidante) a través de líneas de alimentación, desde sus tanques de almacenamiento hasta la cámara de combustión del motor. Inevitablemente, los tanques, líneas de alimentación, y el motor vibran durante el despegue y ascenso. Esta vibración hace que se genere una oscilación en el empuje, la cual se transmite a la estructura del vehículo. Por otra parte, las propias aceleraciones que experimenta la estructura a lo largo de la misión se transmiten a las líneas de propulsión. Bajo este contexto, cuando las frecuencias naturales de los 2 subsistemas mencionados (estructura y sistema de propulsión) se encuentran próximas entre sí, las oscilaciones se suceden en un sistema de lazo cerrado (estructura – propulsión). Esto representa una inestabilidad del sistema, y las oscilaciones resultantes pueden llegar a ser extremas, alcanzando picos de presiones de aceleraciones de hasta 30g. En este trabajo se presenta la implementación y resultados de un modelo matemático para la simulación y análisis de este fenómeno. Los elementos considerados y modelados del sistema de propulsión incluyen la salida del tanque de propelente, los conductos, la cámara de combustión y un acumulador anti-pogo para cada línea de alimentación. Los modos puramente estructurales se calculan en forma independiente, considerando las masas de fluido como solidarias al volumen que ocupan (“congeladas”). Para el análisis de acoplamiento se obtiene una matriz representativa de todos los grados de libertad del sistema, incluyendo presiones y desplazamientos del fluido en ambas líneas. Sus autovalores y autovectores generalizados brindan los modos del problema. Se analizan las frecuencias naturales, modos y frecuencias de acoplamiento y posibilidades de amortiguación o supresión de la inestabilidad para un vehículo típico alimentado a combustible líquido con un sistema de presurización por gas inerte, y se evalúa la sensibilidad de las frecuencias de los modos acoplados a los distintos parámetros del sistema. El modelo desarrollado permite prevenir la posibilidad de aparición de inestabilidades en una etapa de diseño y diseñar sistemas pasivos o activos de mitigación del problema.
Grupo Fluidodinámica Computacional
Materia
Ingeniería Aeronáutica
Interacción fluido-estructura
Pogo
cohetes
combustible liquido
inestabilidades dinámicas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/134218

id SEDICI_91c87d0f32e8ed7e72a488f712c1cb3a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/134218
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Análisis de pogo en un cohete de combustible líquidoLogarzo, Hernán JavierScarabino, Ana ElenaIngeniería AeronáuticaInteracción fluido-estructuraPogocohetescombustible liquidoinestabilidades dinámicasLa interacción de vibraciones entre el sistema de propulsión y la estructura de un vehículo lanzador puede ser una fuente de inestabilidad dinámica. Desde los días del programa Gemini se han buscado formas para modelar y mitigar este fenómeno potencialmente desastroso, que fue llamado “Pogo”. Estos vehículos alcanzan el empuje necesario a través de la combustión de combustibles sólidos o líquidos en sus motores cohete. En un vehículo con combustible líquido, las bombas impulsan a los propelentes (combustible y oxidante) a través de líneas de alimentación, desde sus tanques de almacenamiento hasta la cámara de combustión del motor. Inevitablemente, los tanques, líneas de alimentación, y el motor vibran durante el despegue y ascenso. Esta vibración hace que se genere una oscilación en el empuje, la cual se transmite a la estructura del vehículo. Por otra parte, las propias aceleraciones que experimenta la estructura a lo largo de la misión se transmiten a las líneas de propulsión. Bajo este contexto, cuando las frecuencias naturales de los 2 subsistemas mencionados (estructura y sistema de propulsión) se encuentran próximas entre sí, las oscilaciones se suceden en un sistema de lazo cerrado (estructura – propulsión). Esto representa una inestabilidad del sistema, y las oscilaciones resultantes pueden llegar a ser extremas, alcanzando picos de presiones de aceleraciones de hasta 30g. En este trabajo se presenta la implementación y resultados de un modelo matemático para la simulación y análisis de este fenómeno. Los elementos considerados y modelados del sistema de propulsión incluyen la salida del tanque de propelente, los conductos, la cámara de combustión y un acumulador anti-pogo para cada línea de alimentación. Los modos puramente estructurales se calculan en forma independiente, considerando las masas de fluido como solidarias al volumen que ocupan (“congeladas”). Para el análisis de acoplamiento se obtiene una matriz representativa de todos los grados de libertad del sistema, incluyendo presiones y desplazamientos del fluido en ambas líneas. Sus autovalores y autovectores generalizados brindan los modos del problema. Se analizan las frecuencias naturales, modos y frecuencias de acoplamiento y posibilidades de amortiguación o supresión de la inestabilidad para un vehículo típico alimentado a combustible líquido con un sistema de presurización por gas inerte, y se evalúa la sensibilidad de las frecuencias de los modos acoplados a los distintos parámetros del sistema. El modelo desarrollado permite prevenir la posibilidad de aparición de inestabilidades en una etapa de diseño y diseñar sistemas pasivos o activos de mitigación del problema.Grupo Fluidodinámica Computacional2010info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/134218spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:05:53Zoai:sedici.unlp.edu.ar:10915/134218Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:05:53.611SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Análisis de pogo en un cohete de combustible líquido
title Análisis de pogo en un cohete de combustible líquido
spellingShingle Análisis de pogo en un cohete de combustible líquido
Logarzo, Hernán Javier
Ingeniería Aeronáutica
Interacción fluido-estructura
Pogo
cohetes
combustible liquido
inestabilidades dinámicas
title_short Análisis de pogo en un cohete de combustible líquido
title_full Análisis de pogo en un cohete de combustible líquido
title_fullStr Análisis de pogo en un cohete de combustible líquido
title_full_unstemmed Análisis de pogo en un cohete de combustible líquido
title_sort Análisis de pogo en un cohete de combustible líquido
dc.creator.none.fl_str_mv Logarzo, Hernán Javier
Scarabino, Ana Elena
author Logarzo, Hernán Javier
author_facet Logarzo, Hernán Javier
Scarabino, Ana Elena
author_role author
author2 Scarabino, Ana Elena
author2_role author
dc.subject.none.fl_str_mv Ingeniería Aeronáutica
Interacción fluido-estructura
Pogo
cohetes
combustible liquido
inestabilidades dinámicas
topic Ingeniería Aeronáutica
Interacción fluido-estructura
Pogo
cohetes
combustible liquido
inestabilidades dinámicas
dc.description.none.fl_txt_mv La interacción de vibraciones entre el sistema de propulsión y la estructura de un vehículo lanzador puede ser una fuente de inestabilidad dinámica. Desde los días del programa Gemini se han buscado formas para modelar y mitigar este fenómeno potencialmente desastroso, que fue llamado “Pogo”. Estos vehículos alcanzan el empuje necesario a través de la combustión de combustibles sólidos o líquidos en sus motores cohete. En un vehículo con combustible líquido, las bombas impulsan a los propelentes (combustible y oxidante) a través de líneas de alimentación, desde sus tanques de almacenamiento hasta la cámara de combustión del motor. Inevitablemente, los tanques, líneas de alimentación, y el motor vibran durante el despegue y ascenso. Esta vibración hace que se genere una oscilación en el empuje, la cual se transmite a la estructura del vehículo. Por otra parte, las propias aceleraciones que experimenta la estructura a lo largo de la misión se transmiten a las líneas de propulsión. Bajo este contexto, cuando las frecuencias naturales de los 2 subsistemas mencionados (estructura y sistema de propulsión) se encuentran próximas entre sí, las oscilaciones se suceden en un sistema de lazo cerrado (estructura – propulsión). Esto representa una inestabilidad del sistema, y las oscilaciones resultantes pueden llegar a ser extremas, alcanzando picos de presiones de aceleraciones de hasta 30g. En este trabajo se presenta la implementación y resultados de un modelo matemático para la simulación y análisis de este fenómeno. Los elementos considerados y modelados del sistema de propulsión incluyen la salida del tanque de propelente, los conductos, la cámara de combustión y un acumulador anti-pogo para cada línea de alimentación. Los modos puramente estructurales se calculan en forma independiente, considerando las masas de fluido como solidarias al volumen que ocupan (“congeladas”). Para el análisis de acoplamiento se obtiene una matriz representativa de todos los grados de libertad del sistema, incluyendo presiones y desplazamientos del fluido en ambas líneas. Sus autovalores y autovectores generalizados brindan los modos del problema. Se analizan las frecuencias naturales, modos y frecuencias de acoplamiento y posibilidades de amortiguación o supresión de la inestabilidad para un vehículo típico alimentado a combustible líquido con un sistema de presurización por gas inerte, y se evalúa la sensibilidad de las frecuencias de los modos acoplados a los distintos parámetros del sistema. El modelo desarrollado permite prevenir la posibilidad de aparición de inestabilidades en una etapa de diseño y diseñar sistemas pasivos o activos de mitigación del problema.
Grupo Fluidodinámica Computacional
description La interacción de vibraciones entre el sistema de propulsión y la estructura de un vehículo lanzador puede ser una fuente de inestabilidad dinámica. Desde los días del programa Gemini se han buscado formas para modelar y mitigar este fenómeno potencialmente desastroso, que fue llamado “Pogo”. Estos vehículos alcanzan el empuje necesario a través de la combustión de combustibles sólidos o líquidos en sus motores cohete. En un vehículo con combustible líquido, las bombas impulsan a los propelentes (combustible y oxidante) a través de líneas de alimentación, desde sus tanques de almacenamiento hasta la cámara de combustión del motor. Inevitablemente, los tanques, líneas de alimentación, y el motor vibran durante el despegue y ascenso. Esta vibración hace que se genere una oscilación en el empuje, la cual se transmite a la estructura del vehículo. Por otra parte, las propias aceleraciones que experimenta la estructura a lo largo de la misión se transmiten a las líneas de propulsión. Bajo este contexto, cuando las frecuencias naturales de los 2 subsistemas mencionados (estructura y sistema de propulsión) se encuentran próximas entre sí, las oscilaciones se suceden en un sistema de lazo cerrado (estructura – propulsión). Esto representa una inestabilidad del sistema, y las oscilaciones resultantes pueden llegar a ser extremas, alcanzando picos de presiones de aceleraciones de hasta 30g. En este trabajo se presenta la implementación y resultados de un modelo matemático para la simulación y análisis de este fenómeno. Los elementos considerados y modelados del sistema de propulsión incluyen la salida del tanque de propelente, los conductos, la cámara de combustión y un acumulador anti-pogo para cada línea de alimentación. Los modos puramente estructurales se calculan en forma independiente, considerando las masas de fluido como solidarias al volumen que ocupan (“congeladas”). Para el análisis de acoplamiento se obtiene una matriz representativa de todos los grados de libertad del sistema, incluyendo presiones y desplazamientos del fluido en ambas líneas. Sus autovalores y autovectores generalizados brindan los modos del problema. Se analizan las frecuencias naturales, modos y frecuencias de acoplamiento y posibilidades de amortiguación o supresión de la inestabilidad para un vehículo típico alimentado a combustible líquido con un sistema de presurización por gas inerte, y se evalúa la sensibilidad de las frecuencias de los modos acoplados a los distintos parámetros del sistema. El modelo desarrollado permite prevenir la posibilidad de aparición de inestabilidades en una etapa de diseño y diseñar sistemas pasivos o activos de mitigación del problema.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/134218
url http://sedici.unlp.edu.ar/handle/10915/134218
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260559646425088
score 13.13397