On some Classes of Heyting Algebras with Successor that have the Amalgamation Property
- Autores
- Castiglioni, José Luis; San Martín, Hernán Javier
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we shall prove that certain subvarieties of the variety of Salgebras (Heyting algebras with successor) has amalgamation. This result together with an appropriate version of Theorem 1 of [L. L. Maksimova, Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-boolean algebras, Algebra i Logika, 16(6):643-681, 1977] allows us to show interpolation in the calculus IPC S (n), associated with these varieties. We use that every algebra in any of the varieties of S-algebras studied in this work has a canonical extension, to show completeness of the calculus IPC S (n) with respect to appropriate Kripke models.
Facultad de Ciencias Exactas - Materia
-
Matemática
Amalgamation property
Craig’s interpolation theorem
Heyting algebras with operators
Extensions of intuitionistic propositional calculus - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/146211
Ver los metadatos del registro completo
id |
SEDICI_8cdc6ef9dfd9c163165f1b0af424f730 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/146211 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
On some Classes of Heyting Algebras with Successor that have the Amalgamation PropertyCastiglioni, José LuisSan Martín, Hernán JavierMatemáticaAmalgamation propertyCraig’s interpolation theoremHeyting algebras with operatorsExtensions of intuitionistic propositional calculusIn this paper we shall prove that certain subvarieties of the variety of Salgebras (Heyting algebras with successor) has amalgamation. This result together with an appropriate version of Theorem 1 of [L. L. Maksimova, Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-boolean algebras, Algebra i Logika, 16(6):643-681, 1977] allows us to show interpolation in the calculus IPC S (n), associated with these varieties. We use that every algebra in any of the varieties of S-algebras studied in this work has a canonical extension, to show completeness of the calculus IPC S (n) with respect to appropriate Kripke models.Facultad de Ciencias Exactas2012-10-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1255-1269http://sedici.unlp.edu.ar/handle/10915/146211enginfo:eu-repo/semantics/altIdentifier/issn/0039-3215info:eu-repo/semantics/altIdentifier/issn/1572-8730info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-012-9451-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:04:38Zoai:sedici.unlp.edu.ar:10915/146211Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:04:38.343SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
On some Classes of Heyting Algebras with Successor that have the Amalgamation Property |
title |
On some Classes of Heyting Algebras with Successor that have the Amalgamation Property |
spellingShingle |
On some Classes of Heyting Algebras with Successor that have the Amalgamation Property Castiglioni, José Luis Matemática Amalgamation property Craig’s interpolation theorem Heyting algebras with operators Extensions of intuitionistic propositional calculus |
title_short |
On some Classes of Heyting Algebras with Successor that have the Amalgamation Property |
title_full |
On some Classes of Heyting Algebras with Successor that have the Amalgamation Property |
title_fullStr |
On some Classes of Heyting Algebras with Successor that have the Amalgamation Property |
title_full_unstemmed |
On some Classes of Heyting Algebras with Successor that have the Amalgamation Property |
title_sort |
On some Classes of Heyting Algebras with Successor that have the Amalgamation Property |
dc.creator.none.fl_str_mv |
Castiglioni, José Luis San Martín, Hernán Javier |
author |
Castiglioni, José Luis |
author_facet |
Castiglioni, José Luis San Martín, Hernán Javier |
author_role |
author |
author2 |
San Martín, Hernán Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Matemática Amalgamation property Craig’s interpolation theorem Heyting algebras with operators Extensions of intuitionistic propositional calculus |
topic |
Matemática Amalgamation property Craig’s interpolation theorem Heyting algebras with operators Extensions of intuitionistic propositional calculus |
dc.description.none.fl_txt_mv |
In this paper we shall prove that certain subvarieties of the variety of Salgebras (Heyting algebras with successor) has amalgamation. This result together with an appropriate version of Theorem 1 of [L. L. Maksimova, Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-boolean algebras, Algebra i Logika, 16(6):643-681, 1977] allows us to show interpolation in the calculus IPC S (n), associated with these varieties. We use that every algebra in any of the varieties of S-algebras studied in this work has a canonical extension, to show completeness of the calculus IPC S (n) with respect to appropriate Kripke models. Facultad de Ciencias Exactas |
description |
In this paper we shall prove that certain subvarieties of the variety of Salgebras (Heyting algebras with successor) has amalgamation. This result together with an appropriate version of Theorem 1 of [L. L. Maksimova, Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-boolean algebras, Algebra i Logika, 16(6):643-681, 1977] allows us to show interpolation in the calculus IPC S (n), associated with these varieties. We use that every algebra in any of the varieties of S-algebras studied in this work has a canonical extension, to show completeness of the calculus IPC S (n) with respect to appropriate Kripke models. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10-20 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/146211 |
url |
http://sedici.unlp.edu.ar/handle/10915/146211 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0039-3215 info:eu-repo/semantics/altIdentifier/issn/1572-8730 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-012-9451-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1255-1269 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260545391034368 |
score |
13.13397 |