The finite model property for the variety of Heyting algebras with successor
- Autores
- Castiglioni, José Luis; San Martin, Hernan Javier
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The finite model property of the variety of S-algebras was proved by X. Caicedo using Kripke model techniques of the associated calculus. A more algebraic proof, but still strongly based on Kripke model ideas, was given by Muravitskii. In this article we give a purely algebraic proof for the finite model property which is strongly based on the fact that for every element x in a S-algebra the interval [x, S(x)] is a Boolean lattice.
Fil: Castiglioni, José Luis. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: San Martin, Hernan Javier. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
SUCCESSOR OPERATOR
FINITE MODEL PROPERTY
HEYTING ALGEBRAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9200
Ver los metadatos del registro completo
| id |
CONICETDig_9a8e098afb36d4dfe5c38e0e2479868b |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9200 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The finite model property for the variety of Heyting algebras with successorCastiglioni, José LuisSan Martin, Hernan JavierSUCCESSOR OPERATORFINITE MODEL PROPERTYHEYTING ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The finite model property of the variety of S-algebras was proved by X. Caicedo using Kripke model techniques of the associated calculus. A more algebraic proof, but still strongly based on Kripke model ideas, was given by Muravitskii. In this article we give a purely algebraic proof for the finite model property which is strongly based on the fact that for every element x in a S-algebra the interval [x, S(x)] is a Boolean lattice.Fil: Castiglioni, José Luis. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: San Martin, Hernan Javier. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUnión Matemática Argentina2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9200Castiglioni, José Luis; San Martin, Hernan Javier; The finite model property for the variety of Heyting algebras with successor; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 6-2012; 91-960041-69321669-9637enginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol53info:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_serial&pid=0041-6932&lng=es&nrm=isoinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:35:18Zoai:ri.conicet.gov.ar:11336/9200instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:35:18.602CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The finite model property for the variety of Heyting algebras with successor |
| title |
The finite model property for the variety of Heyting algebras with successor |
| spellingShingle |
The finite model property for the variety of Heyting algebras with successor Castiglioni, José Luis SUCCESSOR OPERATOR FINITE MODEL PROPERTY HEYTING ALGEBRAS |
| title_short |
The finite model property for the variety of Heyting algebras with successor |
| title_full |
The finite model property for the variety of Heyting algebras with successor |
| title_fullStr |
The finite model property for the variety of Heyting algebras with successor |
| title_full_unstemmed |
The finite model property for the variety of Heyting algebras with successor |
| title_sort |
The finite model property for the variety of Heyting algebras with successor |
| dc.creator.none.fl_str_mv |
Castiglioni, José Luis San Martin, Hernan Javier |
| author |
Castiglioni, José Luis |
| author_facet |
Castiglioni, José Luis San Martin, Hernan Javier |
| author_role |
author |
| author2 |
San Martin, Hernan Javier |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
SUCCESSOR OPERATOR FINITE MODEL PROPERTY HEYTING ALGEBRAS |
| topic |
SUCCESSOR OPERATOR FINITE MODEL PROPERTY HEYTING ALGEBRAS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The finite model property of the variety of S-algebras was proved by X. Caicedo using Kripke model techniques of the associated calculus. A more algebraic proof, but still strongly based on Kripke model ideas, was given by Muravitskii. In this article we give a purely algebraic proof for the finite model property which is strongly based on the fact that for every element x in a S-algebra the interval [x, S(x)] is a Boolean lattice. Fil: Castiglioni, José Luis. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: San Martin, Hernan Javier. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
The finite model property of the variety of S-algebras was proved by X. Caicedo using Kripke model techniques of the associated calculus. A more algebraic proof, but still strongly based on Kripke model ideas, was given by Muravitskii. In this article we give a purely algebraic proof for the finite model property which is strongly based on the fact that for every element x in a S-algebra the interval [x, S(x)] is a Boolean lattice. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9200 Castiglioni, José Luis; San Martin, Hernan Javier; The finite model property for the variety of Heyting algebras with successor; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 6-2012; 91-96 0041-6932 1669-9637 |
| url |
http://hdl.handle.net/11336/9200 |
| identifier_str_mv |
Castiglioni, José Luis; San Martin, Hernan Javier; The finite model property for the variety of Heyting algebras with successor; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 6-2012; 91-96 0041-6932 1669-9637 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol53 info:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_serial&pid=0041-6932&lng=es&nrm=iso |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
| publisher.none.fl_str_mv |
Unión Matemática Argentina |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847976775968096256 |
| score |
13.087074 |