The finite model property for the variety of Heyting algebras with successor

Autores
Castiglioni, José Luis; San Martin, Hernan Javier
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The finite model property of the variety of S-algebras was proved by X. Caicedo using Kripke model techniques of the associated calculus. A more algebraic proof, but still strongly based on Kripke model ideas, was given by Muravitskii. In this article we give a purely algebraic proof for the finite model property which is strongly based on the fact that for every element x in a S-algebra the interval [x, S(x)] is a Boolean lattice.
Fil: Castiglioni, José Luis. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: San Martin, Hernan Javier. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
SUCCESSOR OPERATOR
FINITE MODEL PROPERTY
HEYTING ALGEBRAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/9200

id CONICETDig_9a8e098afb36d4dfe5c38e0e2479868b
oai_identifier_str oai:ri.conicet.gov.ar:11336/9200
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The finite model property for the variety of Heyting algebras with successorCastiglioni, José LuisSan Martin, Hernan JavierSUCCESSOR OPERATORFINITE MODEL PROPERTYHEYTING ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The finite model property of the variety of S-algebras was proved by X. Caicedo using Kripke model techniques of the associated calculus. A more algebraic proof, but still strongly based on Kripke model ideas, was given by Muravitskii. In this article we give a purely algebraic proof for the finite model property which is strongly based on the fact that for every element x in a S-algebra the interval [x, S(x)] is a Boolean lattice.Fil: Castiglioni, José Luis. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: San Martin, Hernan Javier. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUnión Matemática Argentina2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9200Castiglioni, José Luis; San Martin, Hernan Javier; The finite model property for the variety of Heyting algebras with successor; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 6-2012; 91-960041-69321669-9637enginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol53info:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_serial&pid=0041-6932&lng=es&nrm=isoinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:11Zoai:ri.conicet.gov.ar:11336/9200instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:11.593CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The finite model property for the variety of Heyting algebras with successor
title The finite model property for the variety of Heyting algebras with successor
spellingShingle The finite model property for the variety of Heyting algebras with successor
Castiglioni, José Luis
SUCCESSOR OPERATOR
FINITE MODEL PROPERTY
HEYTING ALGEBRAS
title_short The finite model property for the variety of Heyting algebras with successor
title_full The finite model property for the variety of Heyting algebras with successor
title_fullStr The finite model property for the variety of Heyting algebras with successor
title_full_unstemmed The finite model property for the variety of Heyting algebras with successor
title_sort The finite model property for the variety of Heyting algebras with successor
dc.creator.none.fl_str_mv Castiglioni, José Luis
San Martin, Hernan Javier
author Castiglioni, José Luis
author_facet Castiglioni, José Luis
San Martin, Hernan Javier
author_role author
author2 San Martin, Hernan Javier
author2_role author
dc.subject.none.fl_str_mv SUCCESSOR OPERATOR
FINITE MODEL PROPERTY
HEYTING ALGEBRAS
topic SUCCESSOR OPERATOR
FINITE MODEL PROPERTY
HEYTING ALGEBRAS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The finite model property of the variety of S-algebras was proved by X. Caicedo using Kripke model techniques of the associated calculus. A more algebraic proof, but still strongly based on Kripke model ideas, was given by Muravitskii. In this article we give a purely algebraic proof for the finite model property which is strongly based on the fact that for every element x in a S-algebra the interval [x, S(x)] is a Boolean lattice.
Fil: Castiglioni, José Luis. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: San Martin, Hernan Javier. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The finite model property of the variety of S-algebras was proved by X. Caicedo using Kripke model techniques of the associated calculus. A more algebraic proof, but still strongly based on Kripke model ideas, was given by Muravitskii. In this article we give a purely algebraic proof for the finite model property which is strongly based on the fact that for every element x in a S-algebra the interval [x, S(x)] is a Boolean lattice.
publishDate 2012
dc.date.none.fl_str_mv 2012-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/9200
Castiglioni, José Luis; San Martin, Hernan Javier; The finite model property for the variety of Heyting algebras with successor; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 6-2012; 91-96
0041-6932
1669-9637
url http://hdl.handle.net/11336/9200
identifier_str_mv Castiglioni, José Luis; San Martin, Hernan Javier; The finite model property for the variety of Heyting algebras with successor; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 6-2012; 91-96
0041-6932
1669-9637
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol53
info:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_serial&pid=0041-6932&lng=es&nrm=iso
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613056666009600
score 13.070432