The finite model property for the variety of Heyting algebras with successor
- Autores
- Castiglioni, José Luis; San Martin, Hernan Javier
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The finite model property of the variety of S-algebras was proved by X. Caicedo using Kripke model techniques of the associated calculus. A more algebraic proof, but still strongly based on Kripke model ideas, was given by Muravitskii. In this article we give a purely algebraic proof for the finite model property which is strongly based on the fact that for every element x in a S-algebra the interval [x, S(x)] is a Boolean lattice.
Fil: Castiglioni, José Luis. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: San Martin, Hernan Javier. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
SUCCESSOR OPERATOR
FINITE MODEL PROPERTY
HEYTING ALGEBRAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9200
Ver los metadatos del registro completo
id |
CONICETDig_9a8e098afb36d4dfe5c38e0e2479868b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9200 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The finite model property for the variety of Heyting algebras with successorCastiglioni, José LuisSan Martin, Hernan JavierSUCCESSOR OPERATORFINITE MODEL PROPERTYHEYTING ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The finite model property of the variety of S-algebras was proved by X. Caicedo using Kripke model techniques of the associated calculus. A more algebraic proof, but still strongly based on Kripke model ideas, was given by Muravitskii. In this article we give a purely algebraic proof for the finite model property which is strongly based on the fact that for every element x in a S-algebra the interval [x, S(x)] is a Boolean lattice.Fil: Castiglioni, José Luis. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: San Martin, Hernan Javier. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUnión Matemática Argentina2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9200Castiglioni, José Luis; San Martin, Hernan Javier; The finite model property for the variety of Heyting algebras with successor; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 6-2012; 91-960041-69321669-9637enginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol53info:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_serial&pid=0041-6932&lng=es&nrm=isoinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:11Zoai:ri.conicet.gov.ar:11336/9200instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:11.593CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The finite model property for the variety of Heyting algebras with successor |
title |
The finite model property for the variety of Heyting algebras with successor |
spellingShingle |
The finite model property for the variety of Heyting algebras with successor Castiglioni, José Luis SUCCESSOR OPERATOR FINITE MODEL PROPERTY HEYTING ALGEBRAS |
title_short |
The finite model property for the variety of Heyting algebras with successor |
title_full |
The finite model property for the variety of Heyting algebras with successor |
title_fullStr |
The finite model property for the variety of Heyting algebras with successor |
title_full_unstemmed |
The finite model property for the variety of Heyting algebras with successor |
title_sort |
The finite model property for the variety of Heyting algebras with successor |
dc.creator.none.fl_str_mv |
Castiglioni, José Luis San Martin, Hernan Javier |
author |
Castiglioni, José Luis |
author_facet |
Castiglioni, José Luis San Martin, Hernan Javier |
author_role |
author |
author2 |
San Martin, Hernan Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
SUCCESSOR OPERATOR FINITE MODEL PROPERTY HEYTING ALGEBRAS |
topic |
SUCCESSOR OPERATOR FINITE MODEL PROPERTY HEYTING ALGEBRAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The finite model property of the variety of S-algebras was proved by X. Caicedo using Kripke model techniques of the associated calculus. A more algebraic proof, but still strongly based on Kripke model ideas, was given by Muravitskii. In this article we give a purely algebraic proof for the finite model property which is strongly based on the fact that for every element x in a S-algebra the interval [x, S(x)] is a Boolean lattice. Fil: Castiglioni, José Luis. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: San Martin, Hernan Javier. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The finite model property of the variety of S-algebras was proved by X. Caicedo using Kripke model techniques of the associated calculus. A more algebraic proof, but still strongly based on Kripke model ideas, was given by Muravitskii. In this article we give a purely algebraic proof for the finite model property which is strongly based on the fact that for every element x in a S-algebra the interval [x, S(x)] is a Boolean lattice. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9200 Castiglioni, José Luis; San Martin, Hernan Javier; The finite model property for the variety of Heyting algebras with successor; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 6-2012; 91-96 0041-6932 1669-9637 |
url |
http://hdl.handle.net/11336/9200 |
identifier_str_mv |
Castiglioni, José Luis; San Martin, Hernan Javier; The finite model property for the variety of Heyting algebras with successor; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 53; 2; 6-2012; 91-96 0041-6932 1669-9637 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/revuma.php?p=toc/vol53 info:eu-repo/semantics/altIdentifier/url/http://www.scielo.org.ar/scielo.php?script=sci_serial&pid=0041-6932&lng=es&nrm=iso |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613056666009600 |
score |
13.070432 |