Taxonomic evidence and robustness of the classification applying intelligent data mining.

Autores
Perichinsky, Gregorio; Servente, Magdalena; Servetto, Arturo Carlos; García Martínez, Ramón; Orellana, Rosa Beatriz; Plastino, Ángel Luis
Año de publicación
2003
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Numerical Taxonomy aims to group in families, using so-called structure analysis of operational taxonomic units (OTUs or taxons or taxa). Clusters that constitute families with a new criterion, is the purpose of this series of papers. Structural analysis, based on phenotypic characteristics, exhibits the relationships, in terms of degrees of similarity, through the computation of the Matrix of Similarity, applying the technique of integration dynamic of independent domains, of the semantics of the Dynamic Relational Database Model. The main contribution is to introduce the concept of spectrum of the OTUs, based in the states of their characters. The concept of families' spectra emerges, if the principles of superposition and interference, and the Invariants (centroid, variance and radius) determined by the maximum of the Bienaymé-Tchebycheff relation, are applied to the spectra of the OTUs. Using in successive form an updated database through the increase of the cardinal of the tuples, and as the resulting families are the same, we ascertain the robustness of the method. Through Intelligent Data Mining, we focused our interest on the Quinlan algorithms, applied in classification problems with the Gain of Entropy, we contrast the Computational Taxonomy, obtaining a new criterion of the robustness of the method.
Eje: Aplicaciones (APLI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Data mining
Entropía
Applications
ARTIFICIAL INTELLIGENCE
classification
cluster (family)
spectrum
induction
divide and rule
entropy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/22870

id SEDICI_898754c2385eb1e72b5d1b646dcd6aab
oai_identifier_str oai:sedici.unlp.edu.ar:10915/22870
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Taxonomic evidence and robustness of the classification applying intelligent data mining.Perichinsky, GregorioServente, MagdalenaServetto, Arturo CarlosGarcía Martínez, RamónOrellana, Rosa BeatrizPlastino, Ángel LuisCiencias InformáticasData miningEntropíaApplicationsARTIFICIAL INTELLIGENCEclassificationcluster (family)spectruminductiondivide and ruleentropyNumerical Taxonomy aims to group in families, using so-called structure analysis of operational taxonomic units (OTUs or taxons or taxa). Clusters that constitute families with a new criterion, is the purpose of this series of papers. Structural analysis, based on phenotypic characteristics, exhibits the relationships, in terms of degrees of similarity, through the computation of the Matrix of Similarity, applying the technique of integration dynamic of independent domains, of the semantics of the Dynamic Relational Database Model. The main contribution is to introduce the concept of spectrum of the OTUs, based in the states of their characters. The concept of families' spectra emerges, if the principles of superposition and interference, and the Invariants (centroid, variance and radius) determined by the maximum of the Bienaymé-Tchebycheff relation, are applied to the spectra of the OTUs. Using in successive form an updated database through the increase of the cardinal of the tuples, and as the resulting families are the same, we ascertain the robustness of the method. Through Intelligent Data Mining, we focused our interest on the Quinlan algorithms, applied in classification problems with the Gain of Entropy, we contrast the Computational Taxonomy, obtaining a new criterion of the robustness of the method.Eje: Aplicaciones (APLI)Red de Universidades con Carreras en Informática (RedUNCI)2003-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1797-1808http://sedici.unlp.edu.ar/handle/10915/22870enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:12Zoai:sedici.unlp.edu.ar:10915/22870Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:13.029SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Taxonomic evidence and robustness of the classification applying intelligent data mining.
title Taxonomic evidence and robustness of the classification applying intelligent data mining.
spellingShingle Taxonomic evidence and robustness of the classification applying intelligent data mining.
Perichinsky, Gregorio
Ciencias Informáticas
Data mining
Entropía
Applications
ARTIFICIAL INTELLIGENCE
classification
cluster (family)
spectrum
induction
divide and rule
entropy
title_short Taxonomic evidence and robustness of the classification applying intelligent data mining.
title_full Taxonomic evidence and robustness of the classification applying intelligent data mining.
title_fullStr Taxonomic evidence and robustness of the classification applying intelligent data mining.
title_full_unstemmed Taxonomic evidence and robustness of the classification applying intelligent data mining.
title_sort Taxonomic evidence and robustness of the classification applying intelligent data mining.
dc.creator.none.fl_str_mv Perichinsky, Gregorio
Servente, Magdalena
Servetto, Arturo Carlos
García Martínez, Ramón
Orellana, Rosa Beatriz
Plastino, Ángel Luis
author Perichinsky, Gregorio
author_facet Perichinsky, Gregorio
Servente, Magdalena
Servetto, Arturo Carlos
García Martínez, Ramón
Orellana, Rosa Beatriz
Plastino, Ángel Luis
author_role author
author2 Servente, Magdalena
Servetto, Arturo Carlos
García Martínez, Ramón
Orellana, Rosa Beatriz
Plastino, Ángel Luis
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Data mining
Entropía
Applications
ARTIFICIAL INTELLIGENCE
classification
cluster (family)
spectrum
induction
divide and rule
entropy
topic Ciencias Informáticas
Data mining
Entropía
Applications
ARTIFICIAL INTELLIGENCE
classification
cluster (family)
spectrum
induction
divide and rule
entropy
dc.description.none.fl_txt_mv Numerical Taxonomy aims to group in families, using so-called structure analysis of operational taxonomic units (OTUs or taxons or taxa). Clusters that constitute families with a new criterion, is the purpose of this series of papers. Structural analysis, based on phenotypic characteristics, exhibits the relationships, in terms of degrees of similarity, through the computation of the Matrix of Similarity, applying the technique of integration dynamic of independent domains, of the semantics of the Dynamic Relational Database Model. The main contribution is to introduce the concept of spectrum of the OTUs, based in the states of their characters. The concept of families' spectra emerges, if the principles of superposition and interference, and the Invariants (centroid, variance and radius) determined by the maximum of the Bienaymé-Tchebycheff relation, are applied to the spectra of the OTUs. Using in successive form an updated database through the increase of the cardinal of the tuples, and as the resulting families are the same, we ascertain the robustness of the method. Through Intelligent Data Mining, we focused our interest on the Quinlan algorithms, applied in classification problems with the Gain of Entropy, we contrast the Computational Taxonomy, obtaining a new criterion of the robustness of the method.
Eje: Aplicaciones (APLI)
Red de Universidades con Carreras en Informática (RedUNCI)
description Numerical Taxonomy aims to group in families, using so-called structure analysis of operational taxonomic units (OTUs or taxons or taxa). Clusters that constitute families with a new criterion, is the purpose of this series of papers. Structural analysis, based on phenotypic characteristics, exhibits the relationships, in terms of degrees of similarity, through the computation of the Matrix of Similarity, applying the technique of integration dynamic of independent domains, of the semantics of the Dynamic Relational Database Model. The main contribution is to introduce the concept of spectrum of the OTUs, based in the states of their characters. The concept of families' spectra emerges, if the principles of superposition and interference, and the Invariants (centroid, variance and radius) determined by the maximum of the Bienaymé-Tchebycheff relation, are applied to the spectra of the OTUs. Using in successive form an updated database through the increase of the cardinal of the tuples, and as the resulting families are the same, we ascertain the robustness of the method. Through Intelligent Data Mining, we focused our interest on the Quinlan algorithms, applied in classification problems with the Gain of Entropy, we contrast the Computational Taxonomy, obtaining a new criterion of the robustness of the method.
publishDate 2003
dc.date.none.fl_str_mv 2003-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/22870
url http://sedici.unlp.edu.ar/handle/10915/22870
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
1797-1808
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615810964783104
score 13.070432