Taxonomic evidence and robustness of the classification applying intelligent data mining.
- Autores
- Perichinsky, Gregorio; Servente, Magdalena; Servetto, Arturo Carlos; García Martínez, Ramón; Orellana, Rosa Beatriz; Plastino, Ángel Luis
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Numerical Taxonomy aims to group in families, using so-called structure analysis of operational taxonomic units (OTUs or taxons or taxa). Clusters that constitute families with a new criterion, is the purpose of this series of papers. Structural analysis, based on phenotypic characteristics, exhibits the relationships, in terms of degrees of similarity, through the computation of the Matrix of Similarity, applying the technique of integration dynamic of independent domains, of the semantics of the Dynamic Relational Database Model. The main contribution is to introduce the concept of spectrum of the OTUs, based in the states of their characters. The concept of families' spectra emerges, if the principles of superposition and interference, and the Invariants (centroid, variance and radius) determined by the maximum of the Bienaymé-Tchebycheff relation, are applied to the spectra of the OTUs. Using in successive form an updated database through the increase of the cardinal of the tuples, and as the resulting families are the same, we ascertain the robustness of the method. Through Intelligent Data Mining, we focused our interest on the Quinlan algorithms, applied in classification problems with the Gain of Entropy, we contrast the Computational Taxonomy, obtaining a new criterion of the robustness of the method.
Eje: Aplicaciones (APLI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Data mining
Entropía
Applications
ARTIFICIAL INTELLIGENCE
classification
cluster (family)
spectrum
induction
divide and rule
entropy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22870
Ver los metadatos del registro completo
id |
SEDICI_898754c2385eb1e72b5d1b646dcd6aab |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22870 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Taxonomic evidence and robustness of the classification applying intelligent data mining.Perichinsky, GregorioServente, MagdalenaServetto, Arturo CarlosGarcía Martínez, RamónOrellana, Rosa BeatrizPlastino, Ángel LuisCiencias InformáticasData miningEntropíaApplicationsARTIFICIAL INTELLIGENCEclassificationcluster (family)spectruminductiondivide and ruleentropyNumerical Taxonomy aims to group in families, using so-called structure analysis of operational taxonomic units (OTUs or taxons or taxa). Clusters that constitute families with a new criterion, is the purpose of this series of papers. Structural analysis, based on phenotypic characteristics, exhibits the relationships, in terms of degrees of similarity, through the computation of the Matrix of Similarity, applying the technique of integration dynamic of independent domains, of the semantics of the Dynamic Relational Database Model. The main contribution is to introduce the concept of spectrum of the OTUs, based in the states of their characters. The concept of families' spectra emerges, if the principles of superposition and interference, and the Invariants (centroid, variance and radius) determined by the maximum of the Bienaymé-Tchebycheff relation, are applied to the spectra of the OTUs. Using in successive form an updated database through the increase of the cardinal of the tuples, and as the resulting families are the same, we ascertain the robustness of the method. Through Intelligent Data Mining, we focused our interest on the Quinlan algorithms, applied in classification problems with the Gain of Entropy, we contrast the Computational Taxonomy, obtaining a new criterion of the robustness of the method.Eje: Aplicaciones (APLI)Red de Universidades con Carreras en Informática (RedUNCI)2003-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1797-1808http://sedici.unlp.edu.ar/handle/10915/22870enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:12Zoai:sedici.unlp.edu.ar:10915/22870Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:13.029SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Taxonomic evidence and robustness of the classification applying intelligent data mining. |
title |
Taxonomic evidence and robustness of the classification applying intelligent data mining. |
spellingShingle |
Taxonomic evidence and robustness of the classification applying intelligent data mining. Perichinsky, Gregorio Ciencias Informáticas Data mining Entropía Applications ARTIFICIAL INTELLIGENCE classification cluster (family) spectrum induction divide and rule entropy |
title_short |
Taxonomic evidence and robustness of the classification applying intelligent data mining. |
title_full |
Taxonomic evidence and robustness of the classification applying intelligent data mining. |
title_fullStr |
Taxonomic evidence and robustness of the classification applying intelligent data mining. |
title_full_unstemmed |
Taxonomic evidence and robustness of the classification applying intelligent data mining. |
title_sort |
Taxonomic evidence and robustness of the classification applying intelligent data mining. |
dc.creator.none.fl_str_mv |
Perichinsky, Gregorio Servente, Magdalena Servetto, Arturo Carlos García Martínez, Ramón Orellana, Rosa Beatriz Plastino, Ángel Luis |
author |
Perichinsky, Gregorio |
author_facet |
Perichinsky, Gregorio Servente, Magdalena Servetto, Arturo Carlos García Martínez, Ramón Orellana, Rosa Beatriz Plastino, Ángel Luis |
author_role |
author |
author2 |
Servente, Magdalena Servetto, Arturo Carlos García Martínez, Ramón Orellana, Rosa Beatriz Plastino, Ángel Luis |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Data mining Entropía Applications ARTIFICIAL INTELLIGENCE classification cluster (family) spectrum induction divide and rule entropy |
topic |
Ciencias Informáticas Data mining Entropía Applications ARTIFICIAL INTELLIGENCE classification cluster (family) spectrum induction divide and rule entropy |
dc.description.none.fl_txt_mv |
Numerical Taxonomy aims to group in families, using so-called structure analysis of operational taxonomic units (OTUs or taxons or taxa). Clusters that constitute families with a new criterion, is the purpose of this series of papers. Structural analysis, based on phenotypic characteristics, exhibits the relationships, in terms of degrees of similarity, through the computation of the Matrix of Similarity, applying the technique of integration dynamic of independent domains, of the semantics of the Dynamic Relational Database Model. The main contribution is to introduce the concept of spectrum of the OTUs, based in the states of their characters. The concept of families' spectra emerges, if the principles of superposition and interference, and the Invariants (centroid, variance and radius) determined by the maximum of the Bienaymé-Tchebycheff relation, are applied to the spectra of the OTUs. Using in successive form an updated database through the increase of the cardinal of the tuples, and as the resulting families are the same, we ascertain the robustness of the method. Through Intelligent Data Mining, we focused our interest on the Quinlan algorithms, applied in classification problems with the Gain of Entropy, we contrast the Computational Taxonomy, obtaining a new criterion of the robustness of the method. Eje: Aplicaciones (APLI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Numerical Taxonomy aims to group in families, using so-called structure analysis of operational taxonomic units (OTUs or taxons or taxa). Clusters that constitute families with a new criterion, is the purpose of this series of papers. Structural analysis, based on phenotypic characteristics, exhibits the relationships, in terms of degrees of similarity, through the computation of the Matrix of Similarity, applying the technique of integration dynamic of independent domains, of the semantics of the Dynamic Relational Database Model. The main contribution is to introduce the concept of spectrum of the OTUs, based in the states of their characters. The concept of families' spectra emerges, if the principles of superposition and interference, and the Invariants (centroid, variance and radius) determined by the maximum of the Bienaymé-Tchebycheff relation, are applied to the spectra of the OTUs. Using in successive form an updated database through the increase of the cardinal of the tuples, and as the resulting families are the same, we ascertain the robustness of the method. Through Intelligent Data Mining, we focused our interest on the Quinlan algorithms, applied in classification problems with the Gain of Entropy, we contrast the Computational Taxonomy, obtaining a new criterion of the robustness of the method. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22870 |
url |
http://sedici.unlp.edu.ar/handle/10915/22870 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 1797-1808 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615810964783104 |
score |
13.070432 |