Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs
- Autores
- Fabiani, Patrick; Teichteil-Königsbuch, Florent
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper proposes an original generic hierarchical framework in order to facilitate the modeling stage of complex autonomous robotics mission planning problems with action uncertainties. Such stochastic planning problems can be modeled as Markov Decision Processes [5]. This work is motivated by a real application to autonomous search and rescue rotorcraft within the ReSSAC1 project at ONERA. As shown in Figure 1.a, an autonomous rotorcraft must y and explore over regions, using waypoints, and in order to nd one (roughly localized) person per region (dark small areas). Uncertainties can come from the unpredictability of the environment (wind, visibility) or from a partial knowledge of it: map of obstacles, or elevation map etc. After a short presentation of the framework of structured Markov Decision Processes (MDPs), we present a new original hierarchical MDP model based on generic Dynamic Bayesian Network templates. We illustrate the bene ts of our approach on the basis of search and rescue missions of the ReSSAC project.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Planning and Scheduling
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Robotics
Frameworks
Hierarchical - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23975
Ver los metadatos del registro completo
id |
SEDICI_86a914d4c91baca8023d42c63dfc933a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23975 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNsFabiani, PatrickTeichteil-Königsbuch, FlorentCiencias InformáticasRoboticsFrameworksHierarchicalThis paper proposes an original generic hierarchical framework in order to facilitate the modeling stage of complex autonomous robotics mission planning problems with action uncertainties. Such stochastic planning problems can be modeled as Markov Decision Processes [5]. This work is motivated by a real application to autonomous search and rescue rotorcraft within the ReSSAC1 project at ONERA. As shown in Figure 1.a, an autonomous rotorcraft must y and explore over regions, using waypoints, and in order to nd one (roughly localized) person per region (dark small areas). Uncertainties can come from the unpredictability of the environment (wind, visibility) or from a partial knowledge of it: map of obstacles, or elevation map etc. After a short presentation of the framework of structured Markov Decision Processes (MDPs), we present a new original hierarchical MDP model based on generic Dynamic Bayesian Network templates. We illustrate the bene ts of our approach on the basis of search and rescue missions of the ReSSAC project.IFIP International Conference on Artificial Intelligence in Theory and Practice - Planning and SchedulingRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23975enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:48:18Zoai:sedici.unlp.edu.ar:10915/23975Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:48:19.145SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs |
title |
Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs |
spellingShingle |
Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs Fabiani, Patrick Ciencias Informáticas Robotics Frameworks Hierarchical |
title_short |
Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs |
title_full |
Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs |
title_fullStr |
Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs |
title_full_unstemmed |
Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs |
title_sort |
Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs |
dc.creator.none.fl_str_mv |
Fabiani, Patrick Teichteil-Königsbuch, Florent |
author |
Fabiani, Patrick |
author_facet |
Fabiani, Patrick Teichteil-Königsbuch, Florent |
author_role |
author |
author2 |
Teichteil-Königsbuch, Florent |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Robotics Frameworks Hierarchical |
topic |
Ciencias Informáticas Robotics Frameworks Hierarchical |
dc.description.none.fl_txt_mv |
This paper proposes an original generic hierarchical framework in order to facilitate the modeling stage of complex autonomous robotics mission planning problems with action uncertainties. Such stochastic planning problems can be modeled as Markov Decision Processes [5]. This work is motivated by a real application to autonomous search and rescue rotorcraft within the ReSSAC1 project at ONERA. As shown in Figure 1.a, an autonomous rotorcraft must y and explore over regions, using waypoints, and in order to nd one (roughly localized) person per region (dark small areas). Uncertainties can come from the unpredictability of the environment (wind, visibility) or from a partial knowledge of it: map of obstacles, or elevation map etc. After a short presentation of the framework of structured Markov Decision Processes (MDPs), we present a new original hierarchical MDP model based on generic Dynamic Bayesian Network templates. We illustrate the bene ts of our approach on the basis of search and rescue missions of the ReSSAC project. IFIP International Conference on Artificial Intelligence in Theory and Practice - Planning and Scheduling Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This paper proposes an original generic hierarchical framework in order to facilitate the modeling stage of complex autonomous robotics mission planning problems with action uncertainties. Such stochastic planning problems can be modeled as Markov Decision Processes [5]. This work is motivated by a real application to autonomous search and rescue rotorcraft within the ReSSAC1 project at ONERA. As shown in Figure 1.a, an autonomous rotorcraft must y and explore over regions, using waypoints, and in order to nd one (roughly localized) person per region (dark small areas). Uncertainties can come from the unpredictability of the environment (wind, visibility) or from a partial knowledge of it: map of obstacles, or elevation map etc. After a short presentation of the framework of structured Markov Decision Processes (MDPs), we present a new original hierarchical MDP model based on generic Dynamic Bayesian Network templates. We illustrate the bene ts of our approach on the basis of search and rescue missions of the ReSSAC project. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23975 |
url |
http://sedici.unlp.edu.ar/handle/10915/23975 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063910365429760 |
score |
13.22299 |