Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs

Autores
Fabiani, Patrick; Teichteil-Königsbuch, Florent
Año de publicación
2006
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This paper proposes an original generic hierarchical framework in order to facilitate the modeling stage of complex autonomous robotics mission planning problems with action uncertainties. Such stochastic planning problems can be modeled as Markov Decision Processes [5]. This work is motivated by a real application to autonomous search and rescue rotorcraft within the ReSSAC1 project at ONERA. As shown in Figure 1.a, an autonomous rotorcraft must y and explore over regions, using waypoints, and in order to nd one (roughly localized) person per region (dark small areas). Uncertainties can come from the unpredictability of the environment (wind, visibility) or from a partial knowledge of it: map of obstacles, or elevation map etc. After a short presentation of the framework of structured Markov Decision Processes (MDPs), we present a new original hierarchical MDP model based on generic Dynamic Bayesian Network templates. We illustrate the bene ts of our approach on the basis of search and rescue missions of the ReSSAC project.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Planning and Scheduling
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Robotics
Frameworks
Hierarchical
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23975

id SEDICI_86a914d4c91baca8023d42c63dfc933a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23975
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNsFabiani, PatrickTeichteil-Königsbuch, FlorentCiencias InformáticasRoboticsFrameworksHierarchicalThis paper proposes an original generic hierarchical framework in order to facilitate the modeling stage of complex autonomous robotics mission planning problems with action uncertainties. Such stochastic planning problems can be modeled as Markov Decision Processes [5]. This work is motivated by a real application to autonomous search and rescue rotorcraft within the ReSSAC1 project at ONERA. As shown in Figure 1.a, an autonomous rotorcraft must y and explore over regions, using waypoints, and in order to nd one (roughly localized) person per region (dark small areas). Uncertainties can come from the unpredictability of the environment (wind, visibility) or from a partial knowledge of it: map of obstacles, or elevation map etc. After a short presentation of the framework of structured Markov Decision Processes (MDPs), we present a new original hierarchical MDP model based on generic Dynamic Bayesian Network templates. We illustrate the bene ts of our approach on the basis of search and rescue missions of the ReSSAC project.IFIP International Conference on Artificial Intelligence in Theory and Practice - Planning and SchedulingRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23975enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:48:18Zoai:sedici.unlp.edu.ar:10915/23975Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:48:19.145SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs
title Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs
spellingShingle Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs
Fabiani, Patrick
Ciencias Informáticas
Robotics
Frameworks
Hierarchical
title_short Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs
title_full Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs
title_fullStr Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs
title_full_unstemmed Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs
title_sort Autonomous search and rescue rotorcraft mission stochastic planning with generic DBNs
dc.creator.none.fl_str_mv Fabiani, Patrick
Teichteil-Königsbuch, Florent
author Fabiani, Patrick
author_facet Fabiani, Patrick
Teichteil-Königsbuch, Florent
author_role author
author2 Teichteil-Königsbuch, Florent
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Robotics
Frameworks
Hierarchical
topic Ciencias Informáticas
Robotics
Frameworks
Hierarchical
dc.description.none.fl_txt_mv This paper proposes an original generic hierarchical framework in order to facilitate the modeling stage of complex autonomous robotics mission planning problems with action uncertainties. Such stochastic planning problems can be modeled as Markov Decision Processes [5]. This work is motivated by a real application to autonomous search and rescue rotorcraft within the ReSSAC1 project at ONERA. As shown in Figure 1.a, an autonomous rotorcraft must y and explore over regions, using waypoints, and in order to nd one (roughly localized) person per region (dark small areas). Uncertainties can come from the unpredictability of the environment (wind, visibility) or from a partial knowledge of it: map of obstacles, or elevation map etc. After a short presentation of the framework of structured Markov Decision Processes (MDPs), we present a new original hierarchical MDP model based on generic Dynamic Bayesian Network templates. We illustrate the bene ts of our approach on the basis of search and rescue missions of the ReSSAC project.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Planning and Scheduling
Red de Universidades con Carreras en Informática (RedUNCI)
description This paper proposes an original generic hierarchical framework in order to facilitate the modeling stage of complex autonomous robotics mission planning problems with action uncertainties. Such stochastic planning problems can be modeled as Markov Decision Processes [5]. This work is motivated by a real application to autonomous search and rescue rotorcraft within the ReSSAC1 project at ONERA. As shown in Figure 1.a, an autonomous rotorcraft must y and explore over regions, using waypoints, and in order to nd one (roughly localized) person per region (dark small areas). Uncertainties can come from the unpredictability of the environment (wind, visibility) or from a partial knowledge of it: map of obstacles, or elevation map etc. After a short presentation of the framework of structured Markov Decision Processes (MDPs), we present a new original hierarchical MDP model based on generic Dynamic Bayesian Network templates. We illustrate the bene ts of our approach on the basis of search and rescue missions of the ReSSAC project.
publishDate 2006
dc.date.none.fl_str_mv 2006-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23975
url http://sedici.unlp.edu.ar/handle/10915/23975
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846063910365429760
score 13.22299