A data pipeline for forest fire prediction in Pinamar
- Autores
- Martinez Saucedo, Ana; Inchausti, Pablo Ezequiel
- Año de publicación
- 2023
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In recent years, the severity of forest fires has reached worrying levels both internationally and nationally. However, thanks to the advance of technology, it is possible to predict forest fires occurrence and magnitude through Machine Learning models specially developed for this purpose. To achieve this goal, this paper describes the development of an automated data pipeline in the Python programming language that generates a forest. fires dataset specific to Pinamar area, thus allowing the subsequent training of predictive fire models. It is also configurable to gather meteorological, topographical and fuel data from other geographical areas.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
incendios forestales
medio ambiente
datos abiertos
machine learning
remote sensing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/157006
Ver los metadatos del registro completo
| id |
SEDICI_85ca788adff3f1df32f60af34d108864 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/157006 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
A data pipeline for forest fire prediction in PinamarMartinez Saucedo, AnaInchausti, Pablo EzequielCiencias Informáticasincendios forestalesmedio ambientedatos abiertosmachine learningremote sensingIn recent years, the severity of forest fires has reached worrying levels both internationally and nationally. However, thanks to the advance of technology, it is possible to predict forest fires occurrence and magnitude through Machine Learning models specially developed for this purpose. To achieve this goal, this paper describes the development of an automated data pipeline in the Python programming language that generates a forest. fires dataset specific to Pinamar area, thus allowing the subsequent training of predictive fire models. It is also configurable to gather meteorological, topographical and fuel data from other geographical areas.Sociedad Argentina de Informática e Investigación Operativa2023-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2-18http://sedici.unlp.edu.ar/handle/10915/157006spainfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/464info:eu-repo/semantics/altIdentifier/issn/1514-6774info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:32:42Zoai:sedici.unlp.edu.ar:10915/157006Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:32:42.242SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
A data pipeline for forest fire prediction in Pinamar |
| title |
A data pipeline for forest fire prediction in Pinamar |
| spellingShingle |
A data pipeline for forest fire prediction in Pinamar Martinez Saucedo, Ana Ciencias Informáticas incendios forestales medio ambiente datos abiertos machine learning remote sensing |
| title_short |
A data pipeline for forest fire prediction in Pinamar |
| title_full |
A data pipeline for forest fire prediction in Pinamar |
| title_fullStr |
A data pipeline for forest fire prediction in Pinamar |
| title_full_unstemmed |
A data pipeline for forest fire prediction in Pinamar |
| title_sort |
A data pipeline for forest fire prediction in Pinamar |
| dc.creator.none.fl_str_mv |
Martinez Saucedo, Ana Inchausti, Pablo Ezequiel |
| author |
Martinez Saucedo, Ana |
| author_facet |
Martinez Saucedo, Ana Inchausti, Pablo Ezequiel |
| author_role |
author |
| author2 |
Inchausti, Pablo Ezequiel |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas incendios forestales medio ambiente datos abiertos machine learning remote sensing |
| topic |
Ciencias Informáticas incendios forestales medio ambiente datos abiertos machine learning remote sensing |
| dc.description.none.fl_txt_mv |
In recent years, the severity of forest fires has reached worrying levels both internationally and nationally. However, thanks to the advance of technology, it is possible to predict forest fires occurrence and magnitude through Machine Learning models specially developed for this purpose. To achieve this goal, this paper describes the development of an automated data pipeline in the Python programming language that generates a forest. fires dataset specific to Pinamar area, thus allowing the subsequent training of predictive fire models. It is also configurable to gather meteorological, topographical and fuel data from other geographical areas. Sociedad Argentina de Informática e Investigación Operativa |
| description |
In recent years, the severity of forest fires has reached worrying levels both internationally and nationally. However, thanks to the advance of technology, it is possible to predict forest fires occurrence and magnitude through Machine Learning models specially developed for this purpose. To achieve this goal, this paper describes the development of an automated data pipeline in the Python programming language that generates a forest. fires dataset specific to Pinamar area, thus allowing the subsequent training of predictive fire models. It is also configurable to gather meteorological, topographical and fuel data from other geographical areas. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/157006 |
| url |
http://sedici.unlp.edu.ar/handle/10915/157006 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/464 info:eu-repo/semantics/altIdentifier/issn/1514-6774 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 2-18 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846064359473676288 |
| score |
13.22299 |