Segmentación de imágenes SAR usando filtros Stack y curvas B-spline
- Autores
- Buemi, María E.; Gambini, María Juliana; Mejail, Marta; Berllés, Julio Jacobo
- Año de publicación
- 2005
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Las imágenes generadas con sistemas de iluminación coherente, como las de Radar de Apertura Sintética (SAR) son muy difíciles de segmentar porque poseen ruido speckle. El ruido speckle es especialmente complejo de remover, debido a su naturaleza no aditiva. Estas imágenes pueden tener zonas homogéneas, heterogéneas o muy heterogéneas, correspondientes a zonas de pastura, bosque o urbanas, respectivamente. La extracción de los bordes entre las diferentes regiones es un tema importante en análisis de imágenes y se utiliza en diversas aplicaciones. En este trabajo se presenta la aplicación de un filtro adaptativo no lineal, denominado stack filter, que tiene el objetivo de remover el ruido speckle y mejorar la imagen para facilitar la búsqueda de características. Está basado en el entrenamiento con dos imágenes, una que se supone ideal (sin ruido) y otra imagen con un ruido speckle. Con el fin de hallar bordes de diferentes regiones en la imagen, se aplica un algoritmo de extracción de contornos basado en curvas B-spline y una distribución estadística adecuada. El algoritmo propuesto se aplica a imágenes SAR reales y se obtienen muy buenos resultados.
III Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Segmentation
Radar de Apertura Sintética (SAR)
filtros stack
ruido speckle - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23040
Ver los metadatos del registro completo
id |
SEDICI_843b55bd826c76cf4a3202b7b364caa2 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23040 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Segmentación de imágenes SAR usando filtros Stack y curvas B-splineBuemi, María E.Gambini, María JulianaMejail, MartaBerllés, Julio JacoboCiencias InformáticasSegmentationRadar de Apertura Sintética (SAR)filtros stackruido speckleLas imágenes generadas con sistemas de iluminación coherente, como las de Radar de Apertura Sintética (SAR) son muy difíciles de segmentar porque poseen ruido speckle. El ruido speckle es especialmente complejo de remover, debido a su naturaleza no aditiva. Estas imágenes pueden tener zonas homogéneas, heterogéneas o muy heterogéneas, correspondientes a zonas de pastura, bosque o urbanas, respectivamente. La extracción de los bordes entre las diferentes regiones es un tema importante en análisis de imágenes y se utiliza en diversas aplicaciones. En este trabajo se presenta la aplicación de un filtro adaptativo no lineal, denominado stack filter, que tiene el objetivo de remover el ruido speckle y mejorar la imagen para facilitar la búsqueda de características. Está basado en el entrenamiento con dos imágenes, una que se supone ideal (sin ruido) y otra imagen con un ruido speckle. Con el fin de hallar bordes de diferentes regiones en la imagen, se aplica un algoritmo de extracción de contornos basado en curvas B-spline y una distribución estadística adecuada. El algoritmo propuesto se aplica a imágenes SAR reales y se obtienen muy buenos resultados.III Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI)2005-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23040spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:16Zoai:sedici.unlp.edu.ar:10915/23040Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:17.147SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Segmentación de imágenes SAR usando filtros Stack y curvas B-spline |
title |
Segmentación de imágenes SAR usando filtros Stack y curvas B-spline |
spellingShingle |
Segmentación de imágenes SAR usando filtros Stack y curvas B-spline Buemi, María E. Ciencias Informáticas Segmentation Radar de Apertura Sintética (SAR) filtros stack ruido speckle |
title_short |
Segmentación de imágenes SAR usando filtros Stack y curvas B-spline |
title_full |
Segmentación de imágenes SAR usando filtros Stack y curvas B-spline |
title_fullStr |
Segmentación de imágenes SAR usando filtros Stack y curvas B-spline |
title_full_unstemmed |
Segmentación de imágenes SAR usando filtros Stack y curvas B-spline |
title_sort |
Segmentación de imágenes SAR usando filtros Stack y curvas B-spline |
dc.creator.none.fl_str_mv |
Buemi, María E. Gambini, María Juliana Mejail, Marta Berllés, Julio Jacobo |
author |
Buemi, María E. |
author_facet |
Buemi, María E. Gambini, María Juliana Mejail, Marta Berllés, Julio Jacobo |
author_role |
author |
author2 |
Gambini, María Juliana Mejail, Marta Berllés, Julio Jacobo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Segmentation Radar de Apertura Sintética (SAR) filtros stack ruido speckle |
topic |
Ciencias Informáticas Segmentation Radar de Apertura Sintética (SAR) filtros stack ruido speckle |
dc.description.none.fl_txt_mv |
Las imágenes generadas con sistemas de iluminación coherente, como las de Radar de Apertura Sintética (SAR) son muy difíciles de segmentar porque poseen ruido speckle. El ruido speckle es especialmente complejo de remover, debido a su naturaleza no aditiva. Estas imágenes pueden tener zonas homogéneas, heterogéneas o muy heterogéneas, correspondientes a zonas de pastura, bosque o urbanas, respectivamente. La extracción de los bordes entre las diferentes regiones es un tema importante en análisis de imágenes y se utiliza en diversas aplicaciones. En este trabajo se presenta la aplicación de un filtro adaptativo no lineal, denominado stack filter, que tiene el objetivo de remover el ruido speckle y mejorar la imagen para facilitar la búsqueda de características. Está basado en el entrenamiento con dos imágenes, una que se supone ideal (sin ruido) y otra imagen con un ruido speckle. Con el fin de hallar bordes de diferentes regiones en la imagen, se aplica un algoritmo de extracción de contornos basado en curvas B-spline y una distribución estadística adecuada. El algoritmo propuesto se aplica a imágenes SAR reales y se obtienen muy buenos resultados. III Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Las imágenes generadas con sistemas de iluminación coherente, como las de Radar de Apertura Sintética (SAR) son muy difíciles de segmentar porque poseen ruido speckle. El ruido speckle es especialmente complejo de remover, debido a su naturaleza no aditiva. Estas imágenes pueden tener zonas homogéneas, heterogéneas o muy heterogéneas, correspondientes a zonas de pastura, bosque o urbanas, respectivamente. La extracción de los bordes entre las diferentes regiones es un tema importante en análisis de imágenes y se utiliza en diversas aplicaciones. En este trabajo se presenta la aplicación de un filtro adaptativo no lineal, denominado stack filter, que tiene el objetivo de remover el ruido speckle y mejorar la imagen para facilitar la búsqueda de características. Está basado en el entrenamiento con dos imágenes, una que se supone ideal (sin ruido) y otra imagen con un ruido speckle. Con el fin de hallar bordes de diferentes regiones en la imagen, se aplica un algoritmo de extracción de contornos basado en curvas B-spline y una distribución estadística adecuada. El algoritmo propuesto se aplica a imágenes SAR reales y se obtienen muy buenos resultados. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23040 |
url |
http://sedici.unlp.edu.ar/handle/10915/23040 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615811828809728 |
score |
13.070432 |