Extracción de contornos mediante algoritmos evolutivos
- Autores
- Katz, Román; Delrieux, Claudio
- Año de publicación
- 2002
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- La extracción de contornos es indispensable para una gran cantidad de tareas asociadas con el reconocimiento e identificación de patrones en imágenes digitales y la visión computacional. La mayoría de las técnicas de segmentación de contornos se basa en la detección de gradientes locales, por lo que con imágenes ruidosas estos métodos se vuelven inestables y poco confiables. Por lo tanto se requieren mecanismos globales que permitan sobreponerse adecuadamente a los mínimos locales generados por el ruido. En este trabajo proponemos el uso de algoritmos evolutivos como mecanismo heurístico para la extracción de contornos en imágenes con ruido. Los algoritmos evolutivos exploran el espacio combinatorio de posibles soluciones por medio de un proceso de selección de mejores soluciones (generadas por mutación y cruzamiento) seguidas por la evaluación de la adecuación de las nuevas soluciones (fitness) y la selección de un nuevo conjunto de soluciones. Cada posible solución es un contorno, cuyo fitness es una medida de la diferencia de intensidades acumulada a lo largo del mismo. Este proceso se repite iterativamente a partir de una primera aproximación (la población inicial), ya sea un cierto número de generaciones o bien hasta alcanzar algún criterio conveniente de detención, por ejemplo encontrar un contorno cuyo fitness es adecuadamente bajo. La exploración uniforme del espacio de soluciones y el no estancamiento en mínimos locales (principalmente por efecto de la operación de mutación) inducen a una mejora gradual de los resultados con la evolución de las poblaciones.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Algorithms
Extracción de Contornos
Heuristic methods
Reconocimiento de Patrones
ARTIFICIAL INTELLIGENCE
Procesamiento de Imágenes
Algoritmos Evolutivos
Metaheurísticas - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23094
Ver los metadatos del registro completo
id |
SEDICI_8340409db544572d5a4ec4559bb0e9c8 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23094 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Extracción de contornos mediante algoritmos evolutivosKatz, RománDelrieux, ClaudioCiencias InformáticasAlgorithmsExtracción de ContornosHeuristic methodsReconocimiento de PatronesARTIFICIAL INTELLIGENCEProcesamiento de ImágenesAlgoritmos EvolutivosMetaheurísticasLa extracción de contornos es indispensable para una gran cantidad de tareas asociadas con el reconocimiento e identificación de patrones en imágenes digitales y la visión computacional. La mayoría de las técnicas de segmentación de contornos se basa en la detección de gradientes locales, por lo que con imágenes ruidosas estos métodos se vuelven inestables y poco confiables. Por lo tanto se requieren mecanismos globales que permitan sobreponerse adecuadamente a los mínimos locales generados por el ruido. En este trabajo proponemos el uso de algoritmos evolutivos como mecanismo heurístico para la extracción de contornos en imágenes con ruido. Los algoritmos evolutivos exploran el espacio combinatorio de posibles soluciones por medio de un proceso de selección de mejores soluciones (generadas por mutación y cruzamiento) seguidas por la evaluación de la adecuación de las nuevas soluciones (fitness) y la selección de un nuevo conjunto de soluciones. Cada posible solución es un contorno, cuyo fitness es una medida de la diferencia de intensidades acumulada a lo largo del mismo. Este proceso se repite iterativamente a partir de una primera aproximación (la población inicial), ya sea un cierto número de generaciones o bien hasta alcanzar algún criterio conveniente de detención, por ejemplo encontrar un contorno cuyo fitness es adecuadamente bajo. La exploración uniforme del espacio de soluciones y el no estancamiento en mínimos locales (principalmente por efecto de la operación de mutación) inducen a una mejora gradual de los resultados con la evolución de las poblaciones.Eje: Sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2002-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf588-599http://sedici.unlp.edu.ar/handle/10915/23094spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:56Zoai:sedici.unlp.edu.ar:10915/23094Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:56.451SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Extracción de contornos mediante algoritmos evolutivos |
title |
Extracción de contornos mediante algoritmos evolutivos |
spellingShingle |
Extracción de contornos mediante algoritmos evolutivos Katz, Román Ciencias Informáticas Algorithms Extracción de Contornos Heuristic methods Reconocimiento de Patrones ARTIFICIAL INTELLIGENCE Procesamiento de Imágenes Algoritmos Evolutivos Metaheurísticas |
title_short |
Extracción de contornos mediante algoritmos evolutivos |
title_full |
Extracción de contornos mediante algoritmos evolutivos |
title_fullStr |
Extracción de contornos mediante algoritmos evolutivos |
title_full_unstemmed |
Extracción de contornos mediante algoritmos evolutivos |
title_sort |
Extracción de contornos mediante algoritmos evolutivos |
dc.creator.none.fl_str_mv |
Katz, Román Delrieux, Claudio |
author |
Katz, Román |
author_facet |
Katz, Román Delrieux, Claudio |
author_role |
author |
author2 |
Delrieux, Claudio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Algorithms Extracción de Contornos Heuristic methods Reconocimiento de Patrones ARTIFICIAL INTELLIGENCE Procesamiento de Imágenes Algoritmos Evolutivos Metaheurísticas |
topic |
Ciencias Informáticas Algorithms Extracción de Contornos Heuristic methods Reconocimiento de Patrones ARTIFICIAL INTELLIGENCE Procesamiento de Imágenes Algoritmos Evolutivos Metaheurísticas |
dc.description.none.fl_txt_mv |
La extracción de contornos es indispensable para una gran cantidad de tareas asociadas con el reconocimiento e identificación de patrones en imágenes digitales y la visión computacional. La mayoría de las técnicas de segmentación de contornos se basa en la detección de gradientes locales, por lo que con imágenes ruidosas estos métodos se vuelven inestables y poco confiables. Por lo tanto se requieren mecanismos globales que permitan sobreponerse adecuadamente a los mínimos locales generados por el ruido. En este trabajo proponemos el uso de algoritmos evolutivos como mecanismo heurístico para la extracción de contornos en imágenes con ruido. Los algoritmos evolutivos exploran el espacio combinatorio de posibles soluciones por medio de un proceso de selección de mejores soluciones (generadas por mutación y cruzamiento) seguidas por la evaluación de la adecuación de las nuevas soluciones (fitness) y la selección de un nuevo conjunto de soluciones. Cada posible solución es un contorno, cuyo fitness es una medida de la diferencia de intensidades acumulada a lo largo del mismo. Este proceso se repite iterativamente a partir de una primera aproximación (la población inicial), ya sea un cierto número de generaciones o bien hasta alcanzar algún criterio conveniente de detención, por ejemplo encontrar un contorno cuyo fitness es adecuadamente bajo. La exploración uniforme del espacio de soluciones y el no estancamiento en mínimos locales (principalmente por efecto de la operación de mutación) inducen a una mejora gradual de los resultados con la evolución de las poblaciones. Eje: Sistemas inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
La extracción de contornos es indispensable para una gran cantidad de tareas asociadas con el reconocimiento e identificación de patrones en imágenes digitales y la visión computacional. La mayoría de las técnicas de segmentación de contornos se basa en la detección de gradientes locales, por lo que con imágenes ruidosas estos métodos se vuelven inestables y poco confiables. Por lo tanto se requieren mecanismos globales que permitan sobreponerse adecuadamente a los mínimos locales generados por el ruido. En este trabajo proponemos el uso de algoritmos evolutivos como mecanismo heurístico para la extracción de contornos en imágenes con ruido. Los algoritmos evolutivos exploran el espacio combinatorio de posibles soluciones por medio de un proceso de selección de mejores soluciones (generadas por mutación y cruzamiento) seguidas por la evaluación de la adecuación de las nuevas soluciones (fitness) y la selección de un nuevo conjunto de soluciones. Cada posible solución es un contorno, cuyo fitness es una medida de la diferencia de intensidades acumulada a lo largo del mismo. Este proceso se repite iterativamente a partir de una primera aproximación (la población inicial), ya sea un cierto número de generaciones o bien hasta alcanzar algún criterio conveniente de detención, por ejemplo encontrar un contorno cuyo fitness es adecuadamente bajo. La exploración uniforme del espacio de soluciones y el no estancamiento en mínimos locales (principalmente por efecto de la operación de mutación) inducen a una mejora gradual de los resultados con la evolución de las poblaciones. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23094 |
url |
http://sedici.unlp.edu.ar/handle/10915/23094 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 588-599 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063906351480832 |
score |
13.22299 |