Global convexity in the bi-criteria Traveling Salesman problem
- Autores
- Barán, Benjamín; Gómez, Osvaldo; Villagra, Marcos
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This work studies the solution space topology of the Traveling Salesman Problem or TSP, as a bi-objective optimization problem. The concepts of category and range of a solution are introduced for the first time in this analysis. These concepts relate each solution of a population to a Pareto set, presenting a more rigorous theoretical framework than previous works studying global convexity for the multi-objective TSP. The conjecture of a globally convex structure for the solution space of the bi-criteria TSP is confirmed with the results presented in this work. This may support successful applications using state of the art metaheuristics based on Ant Colony or Evolutionary Computation.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Evolutionary Computation
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Heuristic methods
traveling salesman problem
multi-objective optimization
global convexity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23912
Ver los metadatos del registro completo
id |
SEDICI_8202f4973d9da818bebe1924dda27adc |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23912 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Global convexity in the bi-criteria Traveling Salesman problemBarán, BenjamínGómez, OsvaldoVillagra, MarcosCiencias InformáticasHeuristic methodstraveling salesman problemmulti-objective optimizationglobal convexityThis work studies the solution space topology of the Traveling Salesman Problem or TSP, as a bi-objective optimization problem. The concepts of category and range of a solution are introduced for the first time in this analysis. These concepts relate each solution of a population to a Pareto set, presenting a more rigorous theoretical framework than previous works studying global convexity for the multi-objective TSP. The conjecture of a globally convex structure for the solution space of the bi-criteria TSP is confirmed with the results presented in this work. This may support successful applications using state of the art metaheuristics based on Ant Colony or Evolutionary Computation.IFIP International Conference on Artificial Intelligence in Theory and Practice - Evolutionary ComputationRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23912enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:25Zoai:sedici.unlp.edu.ar:10915/23912Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:25.5SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Global convexity in the bi-criteria Traveling Salesman problem |
title |
Global convexity in the bi-criteria Traveling Salesman problem |
spellingShingle |
Global convexity in the bi-criteria Traveling Salesman problem Barán, Benjamín Ciencias Informáticas Heuristic methods traveling salesman problem multi-objective optimization global convexity |
title_short |
Global convexity in the bi-criteria Traveling Salesman problem |
title_full |
Global convexity in the bi-criteria Traveling Salesman problem |
title_fullStr |
Global convexity in the bi-criteria Traveling Salesman problem |
title_full_unstemmed |
Global convexity in the bi-criteria Traveling Salesman problem |
title_sort |
Global convexity in the bi-criteria Traveling Salesman problem |
dc.creator.none.fl_str_mv |
Barán, Benjamín Gómez, Osvaldo Villagra, Marcos |
author |
Barán, Benjamín |
author_facet |
Barán, Benjamín Gómez, Osvaldo Villagra, Marcos |
author_role |
author |
author2 |
Gómez, Osvaldo Villagra, Marcos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Heuristic methods traveling salesman problem multi-objective optimization global convexity |
topic |
Ciencias Informáticas Heuristic methods traveling salesman problem multi-objective optimization global convexity |
dc.description.none.fl_txt_mv |
This work studies the solution space topology of the Traveling Salesman Problem or TSP, as a bi-objective optimization problem. The concepts of category and range of a solution are introduced for the first time in this analysis. These concepts relate each solution of a population to a Pareto set, presenting a more rigorous theoretical framework than previous works studying global convexity for the multi-objective TSP. The conjecture of a globally convex structure for the solution space of the bi-criteria TSP is confirmed with the results presented in this work. This may support successful applications using state of the art metaheuristics based on Ant Colony or Evolutionary Computation. IFIP International Conference on Artificial Intelligence in Theory and Practice - Evolutionary Computation Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This work studies the solution space topology of the Traveling Salesman Problem or TSP, as a bi-objective optimization problem. The concepts of category and range of a solution are introduced for the first time in this analysis. These concepts relate each solution of a population to a Pareto set, presenting a more rigorous theoretical framework than previous works studying global convexity for the multi-objective TSP. The conjecture of a globally convex structure for the solution space of the bi-criteria TSP is confirmed with the results presented in this work. This may support successful applications using state of the art metaheuristics based on Ant Colony or Evolutionary Computation. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23912 |
url |
http://sedici.unlp.edu.ar/handle/10915/23912 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260123340242944 |
score |
13.13397 |