Global convexity in the bi-criteria Traveling Salesman problem

Autores
Barán, Benjamín; Gómez, Osvaldo; Villagra, Marcos
Año de publicación
2006
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This work studies the solution space topology of the Traveling Salesman Problem or TSP, as a bi-objective optimization problem. The concepts of category and range of a solution are introduced for the first time in this analysis. These concepts relate each solution of a population to a Pareto set, presenting a more rigorous theoretical framework than previous works studying global convexity for the multi-objective TSP. The conjecture of a globally convex structure for the solution space of the bi-criteria TSP is confirmed with the results presented in this work. This may support successful applications using state of the art metaheuristics based on Ant Colony or Evolutionary Computation.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Evolutionary Computation
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Heuristic methods
traveling salesman problem
multi-objective optimization
global convexity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23912

id SEDICI_8202f4973d9da818bebe1924dda27adc
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23912
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Global convexity in the bi-criteria Traveling Salesman problemBarán, BenjamínGómez, OsvaldoVillagra, MarcosCiencias InformáticasHeuristic methodstraveling salesman problemmulti-objective optimizationglobal convexityThis work studies the solution space topology of the Traveling Salesman Problem or TSP, as a bi-objective optimization problem. The concepts of category and range of a solution are introduced for the first time in this analysis. These concepts relate each solution of a population to a Pareto set, presenting a more rigorous theoretical framework than previous works studying global convexity for the multi-objective TSP. The conjecture of a globally convex structure for the solution space of the bi-criteria TSP is confirmed with the results presented in this work. This may support successful applications using state of the art metaheuristics based on Ant Colony or Evolutionary Computation.IFIP International Conference on Artificial Intelligence in Theory and Practice - Evolutionary ComputationRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23912enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:25Zoai:sedici.unlp.edu.ar:10915/23912Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:25.5SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Global convexity in the bi-criteria Traveling Salesman problem
title Global convexity in the bi-criteria Traveling Salesman problem
spellingShingle Global convexity in the bi-criteria Traveling Salesman problem
Barán, Benjamín
Ciencias Informáticas
Heuristic methods
traveling salesman problem
multi-objective optimization
global convexity
title_short Global convexity in the bi-criteria Traveling Salesman problem
title_full Global convexity in the bi-criteria Traveling Salesman problem
title_fullStr Global convexity in the bi-criteria Traveling Salesman problem
title_full_unstemmed Global convexity in the bi-criteria Traveling Salesman problem
title_sort Global convexity in the bi-criteria Traveling Salesman problem
dc.creator.none.fl_str_mv Barán, Benjamín
Gómez, Osvaldo
Villagra, Marcos
author Barán, Benjamín
author_facet Barán, Benjamín
Gómez, Osvaldo
Villagra, Marcos
author_role author
author2 Gómez, Osvaldo
Villagra, Marcos
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Heuristic methods
traveling salesman problem
multi-objective optimization
global convexity
topic Ciencias Informáticas
Heuristic methods
traveling salesman problem
multi-objective optimization
global convexity
dc.description.none.fl_txt_mv This work studies the solution space topology of the Traveling Salesman Problem or TSP, as a bi-objective optimization problem. The concepts of category and range of a solution are introduced for the first time in this analysis. These concepts relate each solution of a population to a Pareto set, presenting a more rigorous theoretical framework than previous works studying global convexity for the multi-objective TSP. The conjecture of a globally convex structure for the solution space of the bi-criteria TSP is confirmed with the results presented in this work. This may support successful applications using state of the art metaheuristics based on Ant Colony or Evolutionary Computation.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Evolutionary Computation
Red de Universidades con Carreras en Informática (RedUNCI)
description This work studies the solution space topology of the Traveling Salesman Problem or TSP, as a bi-objective optimization problem. The concepts of category and range of a solution are introduced for the first time in this analysis. These concepts relate each solution of a population to a Pareto set, presenting a more rigorous theoretical framework than previous works studying global convexity for the multi-objective TSP. The conjecture of a globally convex structure for the solution space of the bi-criteria TSP is confirmed with the results presented in this work. This may support successful applications using state of the art metaheuristics based on Ant Colony or Evolutionary Computation.
publishDate 2006
dc.date.none.fl_str_mv 2006-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23912
url http://sedici.unlp.edu.ar/handle/10915/23912
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260123340242944
score 13.13397